
Chapter 1

Introduction

1.1 Images and pictures

As we mentioned in the preface, human beings are predominantly visual creatures: we rely heavily
on our vision to make sense of the world around us. We not only look at things to identify and
classify them, but we can scan for differences, and obtain an overall rough “feeling” for a scene with
a quick glance.

Humans have evolved very precise visual skills: we can identify a face in an instant; we can
differentiate colours; we can process a large amount of visual information very quickly.

However, the world is in constant motion: stare at something for long enough and it will change
in some way. Even a large solid structure, like a building or a mountain, will change its appearance
depending on the time of day (day or night); amount of sunlight (clear or cloudy), or various shadows
falling upon it.

We are concerned with single images: snapshots, if you like, of a visual scene. Although image
processing can deal with changing scenes, we shall not discuss it in any detail in this text.

For our purposes, an image is a single picture which represents something. It may be a picture
of a person, of people or animals, or of an outdoor scene, or a microphotograph of an electronic
component, or the result of medical imaging. Even if the picture is not immediately recognizable,
it will not be just a random blur.

1.2 What is image processing?

Image processing involves changing the nature of an image in order to either

1. improve its pictorial information for human interpretation,

2. render it more suitable for autonomous machine perception.

We shall be concerned with digital image processing, which involves using a computer to change the
nature of a digital image (see below). It is necessary to realize that these two aspects represent two
separate but equally important aspects of image processing. A procedure which satisfies condition
(1)—a procedure which makes an image “look better”—may be the very worst procedure for satis-
fying condition (2). Humans like their images to be sharp, clear and detailed; machines prefer their
images to be simple and uncluttered.

Examples of (1) may include:
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2 CHAPTER 1. INTRODUCTION

� Enhancing the edges of an image to make it appear sharper; an example is shown in figure 1.1.
Note how the second image appears “cleaner”; it is a more pleasant image. Sharpening edges
is a vital component of printing: in order for an image to appear “at its best” on the printed
page; some sharpening is usually performed.

(a) The original image (b) Result after “sharperning”

Figure 1.1: Image sharperning

� Removing “noise” from an image; noise being random errors in the image. An example is given
in figure 1.2. Noise is a very common problem in data transmission: all sorts of electronic
components may affect data passing through them, and the results may be undesirable. As
we shall see in chapter 5 noise may take many different forms;each type of noise requiring a
different method of removal.

� Removing motion blur from an image. An example is given in figure 1.3. Note that in the
deblurred image (b) it is easier to read the numberplate, and to see the spikes on the fence
behind the car, as well as other details not at all clear in the original image (a). Motion blur
may occur when the shutter speed of the camera is too long for the speed of the object. In
photographs of fast moving objects: athletes, vehicles for example, the problem of blur may
be considerable.

Examples of (2) may include:

� Obtaining the edges of an image. This may be necessary for the measurement of objects in
an image; an example is shown in figures 1.4. Once we have the edges we can measure their
spread, and the area contained within them. We can also use edge detection algorithms as a
first step in edge enhancement, as we saw above.
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(a) The original image (b) After removing noise

Figure 1.2: Removing noise from an image

(a) The original image (b) After removing the blur

Figure 1.3: Image deblurring
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From the edge result, we see that it may be necessary to enhance the original image slightly,
to make the edges clearer.

(a) The original image (b) Its edge image

Figure 1.4: Finding edges in an image

� Removing detail from an image. For measurement or counting purposes, we may not be
interested in all the detail in an image. For example, a machine inspected items on an assembly
line, the only matters of interest may be shape, size or colour. For such cases, we might want
to simplify the image. Figure 1.5 shows an example: in image (a) is a picture of an African
buffalo, and image (b) shows a blurred version in which extraneous detail (like the logs of
wood in the background) have been removed. Notice that in image (b) all the fine detail is
gone; what remains is the coarse structure of the image. We could for example, measure the
size and shape of the animal without being “distracted” by unnecessary detail.

1.3 Image Acquisition and sampling

Sampling refers to the process of digitizing a continuous function. For example, suppose we take
the function

���������
	���
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��

and sample it at ten evenly spaced values of � only. The resulting sample points are shown in
figure 1.6. This shows an example of undersampling, where the number of points is not sufficient to
reconstruct the function. Suppose we sample the function at 100 points, as shown in figure 1.7. We
can clearly now reconstruct the function; all its properties can be determined from this sampling.
In order to ensure that we have enough sample points, we require that the sampling period is not
greater than one-half the finest detail in our function. This is known as the Nyquist criterion, and
can be formulated more precisely in terms of “frequencies”, which are discussed in chapter 4. The
Nyquist criterion can be stated as the sampling theorem, which says, in effect, that a continuous
function can be reconstructed from its samples provided that the sampling frequency is at least
twice the maximum frequency in the function. A formal account of this theorem is provided by
Castleman [1].
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(a) The original image (b) Blurring to remove detail

Figure 1.5: Blurring an image
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Figure 1.6: Sampling a function—undersampling
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Figure 1.7: Sampling a function with more points
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Sampling an image again requires that we consider the Nyquist criterion, when we consider an
image as a continuous function of two variables, and we wish to sample it to produce a digital image.

An example is shown in figure 1.8 where an image is shown, and then with an undersampled
version. The jagged edges in the undersampled image are examples of aliasing. The sampling rate

Correct sampling; no aliasing An undersampled version with aliasing

Figure 1.8: Effects of sampling

will of course affect the final resolution of the image; we discuss this below. In order to obtain a
sampled (digital) image, we may start with a continuous representation of a scene. To view the
scene, we record the energy reflected from it; we may use visible light, or some other energy source.

Using light

Light is the predominant energy source for images; simply because it is the energy source which
human beings can observe directly. We are all familiar with photographs, which are a pictorial
record of a visual scene.

Many digital images are captured using visible light as the energy source; this has the advantage
of being safe, cheap, easily detected and readily processed with suitable hardware. Two very popular
methods of producing a digital image are with a digital camera or a flat-bed scanner.

CCD camera. Such a camera has, in place of the usual film, an array of photosites; these are
silicon electronic devices whose voltage output is proportional to the intensity of light falling
on them.

For a camera attached to a computer, information from the photosites is then output to a
suitable storage medium. Generally this is done on hardware, as being much faster and more
efficient than software, using a frame-grabbing card. This allows a large number of images to
be captured in a very short time—in the order of one ten-thousandth of a second each. The
images can then be copied onto a permanent storage device at some later time.

This is shown schematically in figure 1.9.

The output will be an array of values; each representing a sampled point from the original
scene. The elements of this array are called picture elements, or more simply pixels.
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Original scene

CCD Array

Digital output

Figure 1.9: Capturing an image with a CCD array

Digital still cameras use a range of devices, from floppy discs and CD’s, to various specialized
cards and “memory sticks”. The information can then be downloaded from these devices to a
computer hard disk.

Flat bed scanner. This works on a principle similar to the CCD camera. Instead of the entire
image being captured at once on a large array, a single row of photosites is moved across the
image, capturing it row-by-row as it moves. Tis is shown schematically in figure 1.10.
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Original scene

Output row

Output array

Row of photosites

Figure 1.10: Capturing an image with a CCD scanner

Since this is a much slower process than taking a picture with a camera, it is quite reasonable
to allow all capture and storage to be processed by suitable software.

Other energy sources

Although light is popular and easy to use, other energy sources may be used to create a digital
image. Visible light is part of the electromagnetic spectrum: radiation in which the energy takes
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the form of waves of varying wavelength. These range from cosmic rays of very short wavelength,
to electric power, which has very long wavelength. Figure 1.11 illustrates this. For microscopy, we
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Figure 1.11: The electromagnetic spectrum

may use x-rays, or electron beams. As we can see from figure 1.11, x-rays have a shorter wavelength
than visible light, and so can be used to resolve smaller objects than are possible with visible light.
See Clark [2] for a good introduction to this. X-rays are of course also useful in determining the
structure of objects usually hidden from view: such as bones.

A further method of obtaining images is by the use of x-ray tomography, where an object is
encircled by an x-ray beam. As the beam is fired through the object, it is detected on the other side
of the object, as shown in figure 1.12. As the beam moves around the object, an image of the object
can be constructed; such an image is called a tomogram. In a CAT (Computed Axial Tomography)
scan, the patient lies within a tube around which x-ray beams are fired. This enables a large number
of tomographic “slices” to be formed, which can then be joined to produce a three-dimensional image.
A good account of such systems (and others) is given by Siedband [13]

1.4 Images and digital images

Suppose we take an image, a photo, say. For the moment, lets make things easy and suppose the
photo is monochromatic (that is, shades of grey only), so no colour. We may consider this image
as being a two dimensional function, where the function values give the brightness of the image at
any given point, as shown in figure 1.13. We may assume that in such an image brightness values
can be any real numbers in the range

 �  (black) to � �  (white). The ranges of � and � will clearly
depend on the image, but they can take all real values between their minima and maxima.

Such a function can of course be plotted, as shown in figure 1.14. However, such a plot is of
limited use to us in terms of image analysis. The concept of an image as a function, however, will
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Figure 1.12: X-ray tomography
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Figure 1.13: An image as a function
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be vital for the development and implementation of image processing techniques.

Figure 1.14: The image of figure 1.13 plotted as a function of two variables

A digital image differs from a photo in that the � , � , and � 	���� � 
 values are all discrete. Usually
they take on only integer values, so the image shown in figure 1.13 will have � and � ranging from 1
to 256 each, and the brightness values also ranging from 0 (black) to 255 (white). A digital image, as
we have seen above, can be considered as a large array of sampled points from the continuous image,
each of which has a particular quantized brightness; these points are the pixels which constitute the
digital image. The pixels surrounding a given pixel constitute its neighbourhood. A neighbourhood
can be characterized by its shape in the same way as a matrix: we can speak, for example, of a

� � �
neighbourhood, or of a

� � (
neighbourhood. Except in very special circumstances, neighbourhoods

have odd numbers of rows and columns; this ensures that the current pixel is in the centre of the
neighbourhood. An example of a neighbourhood is given in figure 1.15. If a neighbourhood has
an even number of rows or columns (or both), it may be necessary to specify which pixel in the
neighbourhood is the “current pixel”.

1.5 Some applications

Image processing has an enormous range of applications; almost every area of science and technology
can make use of image processing methods. Here is a short list just to give some indication of the
range of image processing applications.

1. Medicine
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48 219 168 145 244 188 120 58

49 218 87 94 133 35 17 148

174 151 74 179 224 3 252 194

77 127 87 139 44 228 149 135

138 229 136 113 250 51 108 163

38 210 185 177 69 76 131 53

178 164 79 158 64 169 85 97

96 209 214 203 223 73 110 200

Current pixel

� � �
neighbourhood

Figure 1.15: Pixels, with a neighbourhood

� Inspection and interpretation of images obtained from X-rays, MRI or CAT scans,
� analysis of cell images, of chromosome karyotypes.

2. Agriculture

� Satellite/aerial views of land, for example to determine how much land is being used for
different purposes, or to investigate the suitability of different regions for different crops,

� inspection of fruit and vegetables—distinguishing good and fresh produce from old.

3. Industry

� Automatic inspection of items on a production line,
� inspection of paper samples.

4. Law enforcement

� Fingerprint analysis,
� sharpening or de-blurring of speed-camera images.

1.6 Aspects of image processing

It is convenient to subdivide different image processing algorithms into broad subclasses. There
are different algorithms for different tasks and problems, and often we would like to distinguish the
nature of the task at hand.

Image enhancement. This refers to processing an image so that the result is more suitable for
a particular application. Example include:

� sharpening or de-blurring an out of focus image,
� highlighting edges,
� improving image contrast, or brightening an image,
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� removing noise.

Image restoration. This may be considered as reversing the damage done to an image by a
known cause, for example:

� removing of blur caused by linear motion,
� removal of optical distortions,
� removing periodic interference.

Image segmentation. This involves subdividing an image into constituent parts, or isolating
certain aspects of an image:

� finding lines, circles, or particular shapes in an image,
� in an aerial photograph, identifying cars, trees, buildings, or roads.

These classes are not disjoint; a given algorithm may be used for both image enhancement or for
image restoration. However, we should be able to decide what it is that we are trying to do with
our image: simply make it look better (enhancement), or removing damage (restoration).

1.7 An image processing task

We will look in some detail at a particular real-world task, and see how the above classes may be
used to describe the various stages in performing this task. The job is to obtain, by an automatic
process, the postcodes from envelopes. Here is how this may be accomplished:

Acquiring the image. First we need to produce a digital image from a paper envelope. This an
be done using either a CCD camera, or a scanner.

Preprocessing. This is the step taken before the “major” image processing task. The problem here
is to perform some basic tasks in order to render the resulting image more suitable for the job
to follow. In this case it may involve enhancing the contrast, removing noise, or identifying
regions likely to contain the postcode.

Segmentation. Here is where we actually “get” the postcode; in other words we extract from the
image that part of it which contains just the postcode.

Representation and description. These terms refer to extracting the particular features which
allow us to differentiate between objects. Here we will be looking for curves, holes and corners
which allow us to distinguish the different digits which constitute a postcode.

Recognition and interpretation. This means assigning labels to objects based on their descrip-
tors (from the previous step), and assigning meanings to those labels. So we identify particular
digits, and we interpret a string of four digits at the end of the address as the postcode.

1.8 Types of digital images

We shall consider four basic types of images:



1.8. TYPES OF DIGITAL IMAGES 13

Binary. Each pixel is just black or white. Since there are only two possible values for each pixel,
we only need one bit per pixel. Such images can therefore be very efficient in terms of
storage. Images for which a binary representation may be suitable include text (printed or
handwriting), fingerprints, or architectural plans.

An example was the image shown in figure 1.4(b) above. In this image, we have only the two
colours: white for the edges, and black for the background. See figure 1.16 below.

1 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 1 1 0

0 0 0 0 0 1

Figure 1.16: A binary image

Greyscale. Each pixel is a shade of grey, normally from
 
(black) to � ��� (white). This range

means that each pixel can be represented by eight bits, or exactly one byte. This is a very
natural range for image file handling. Other greyscale ranges are used, but generally they are
a power of 2. Such images arise in medicine (X-rays), images of printed works, and indeed

� �
%
different grey levels is sufficient for the recognition of most natural objects.

An example is the street scene shown in figure 1.1 above, and in figure 1.17 below.

True colour, or RGB. Here each pixel has a particular colour; that colour being described by the
amount of red, green and blue in it. If each of these components has a range

 
– � ��� , this gives

a total of � ���
� � � % � (�(�( � � � % different possible colours in the image. This is enough colours

for any image. Since the total number of bits required for each pixel is �
�
, such images are

also called �
�
-bit colour images.

Such an image may be considered as consisting of a “stack” of three matrices; representing the
red, green and blue values for each pixel. This means that for every pixel there correspond
three values.

An example is shown in figure 1.18.

Indexed. Most colour images only have a small subset of the more than sixteen million possible
colours. For convenience of storage and file handling, the image has an associated colour map,
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230 229 232 234 235 232 148

237 236 236 234 233 234 152

255 255 255 251 230 236 161

99 90 67 37 94 247 130

222 152 255 129 129 246 132

154 199 255 150 189 241 147

216 132 162 163 170 239 122

Figure 1.17: A greyscale image

or colour palette, which is simply a list of all the colours used in that image. Each pixel has
a value which does not give its colour (as for an RGB image), but an index to the colour in
the map.

It is convenient if an image has � �
%
colours or less, for then the index values will only require

one byte each to store. Some image file formats (for example, Compuserve GIF), allow only
� �
%
colours or fewer in each image, for precisely this reason.

Figure 1.19 shows an example. In this image the indices, rather then being the grey values
of the pixels, are simply indices into the colour map. Without the colour map, the image
would be very dark and colourless. In the figure, for example, pixels labelled 5 correspond to
0.2627 0.2588 0.2549, which is a dark greyish colour.

1.9 Image File Sizes

Image files tend to be large. We shall investigate the amount of information used in different image
type of varying sizes. For example, suppose we consider a

� � �
� � � � binary image. The number of

bits used in this image (assuming no compression, and neglecting, for the sake of discussion, any
header information) is

� � � � � � � � � � �
%

� � � ���� � � (
% �

bytes
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Red Green Blue

49 55 56 57 52 53

58 60 60 58 55 57

58 58 54 53 55 56

83 78 72 69 68 69

88 91 91 84 83 82

69 76 83 78 76 75

61 69 73 78 76 76

64 76 82 79 78 78

93 93 91 91 86 86

88 82 88 90 88 89

125 119 113 108 111 110

137 136 132 128 126 120

105 108 114 114 118 113

96 103 112 108 111 107

66 80 77 80 87 77

81 93 96 99 86 85

83 83 91 94 92 88

135 128 126 112 107 106

141 129 129 117 115 101

95 99 109 108 112 109

84 93 107 101 105 102

Figure 1.18: A true colour image



16 CHAPTER 1. INTRODUCTION

4 5 5 5 5 5

5 4 5 5 6 6

5 5 5 0 8 9

5 5 5 5 11 11

5 5 5 8 16 20

8 11 11 26 33 20

11 20 33 33 58 37

0.1211 0.1211 0.1416

0.1807 0.2549 0.1729

0.2197 0.3447 0.1807

0.1611 0.1768 0.1924

0.2432 0.2471 0.1924

0.2119 0.1963 0.2002

0.2627 0.2588 0.2549

0.2197 0.2432 0.2588
...

...
...

Indices
Colour map

Figure 1.19: An indexed colour image

� � � � ( % � Kb
�  �  � � Mb.

(Here we use the convention that a kilobyte is one thousand bytes, and a megabyte is one million
bytes.)

A greyscale image of the same size requires:
� � � � � � � � � � �

%
� � � ��� bytes

� �
%

� � � � Kb
�  � �

%
� Mb.

If we now turn our attention to colour images, each pixel is associated with 3 bytes of colour
information. A

� � � � � � � image thus requires
� � � � � � � � � � ( � % � � � � bytes

� ( � % � � � Kb
�  � ( � % Mb.

Many images are of course such larger than this; satellite images may be of the order of several
thousand pixels in each direction.

1.10 Image perception

Much of image processing is concerned with making an image appear “better” to human beings.
We should therefore be aware of the limitations of the the human visual system. Image perception
consists of two basic steps:

1. capturing the image with the eye,
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2. recognising and interpreting the image with the visual cortex in the brain.

The combination and immense variability of these steps influences the ways in we perceive the world
around us.

There are a number of things to bear in mind:

1. Observed intensities vary as to the background. A single block of grey will appear darker
if placed on a white background than if it were placed on a black background. That is, we
don’t perceive grey scales “as they are”, but rather as they differ from their surroundings. In
figure 1.20 a grey square is shown on two different backgrounds. Notice how much darker the
square appears when it is surrounded by a light grey. However, the two central squares have
exactly the same intensity.

Figure 1.20: A grey square on different backgrounds

2. We may observe non-existent intensities as bars in continuously varying grey levels. See for
example figure 1.21. This image varies continuously from light to dark as we travel from left
to right. However, it is impossible for our eyes not to see a few horizontal edges in this image.

3. Our visual system tends to undershoot or overshoot around the boundary of regions of different
intensities. For example, suppose we had a light grey blob on a dark grey background. As
our eye travels from the dark background to the light region, the boundary of the region
appears lighter than the rest of it. Conversely, going in the other direction, the boundary of
the background appears darker than the rest of it.

We have seen in the previous chapter that matrices can be handled very efficiently in Matlab.
Images may be considered as matrices whose elements are the pixel values of the image. In this
chapter we shall investigate how the matrix capabilities of Matlab allow us to investigate images
and their properties.

1.11 Greyscale images

Suppose you are sitting at your computer and have started Matlab. You will have a Matlab
command window open, and in it the Matlab prompt
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Figure 1.21: Continuously varying intensities

>>

ready to receive commands. Type in the command

>> w=imread(’wombats.tif’);

This takes the grey values of all the pixels in the greyscale image wombats.tif and puts them all
into a matrix w. This matrix w is now a Matlab variable, and so we can perform various matrix
operations on it. In general the imread function reads the pixel values from an image file, and
returns a matrix of all the pixel values.

Two things to note about this command:

1. It ends in a semicolon; this has the effect of not displaying the results of the command to the
screen. As the result of this particular command is a matrix of size � �

% � � �
%
, or with

% ��� � %
elements, we don’t really want all its values displayed.

2. The name wombats.tif is given in single quote marks. Without them, Matlab would assume
that wombats.tif was the name of a variable, rather than the name of a file.

Now we can display this matrix as a greyscale image:

>> figure,imshow(w),pixval on

This is really three commands on the one line. Matlab allows many commands to be entered on
the same line; using commas to separate the different commands. The three commands we are using
here are:

figure, which creates a figure on the screen. A figure is a window in which a graphics object can
be placed. Objects may include images, or various types of graphs.

imshow(g), which displays the matrix g as an image.
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pixval on, which turns on the pixel values in our figure. This is a display of the grey values of the
pixels in the image. They appear at the bottom of the figure in the form

� ��� ���

where � is the column value of the given pixel;
�
its row value, and � its grey value. Since

wombats.tif is an 8-bit greyscale image, the pixel values appear as integers in the range
 
– � ��� .

This is shown in figure 1.22.

Figure 1.22: The wombats image with pixval on

If there are no figures open, then an imshow command, or any other command which generates
a graphics object, will open a new figure for displaying the object. However, it is good practice to
use the figure command whenever you wish to create a new figure.

We could display this image directly, without saving its grey values to a matrix, with the
command

imshow(’wombats.tif’)

However, it is better to use a matrix, seeing as these are handled very efficiently in Matlab.

1.12 RGB Images

As we shall discuss in chapter 11; we need to define colours in some standard way, usually as a
subset of a three dimensional coordinate system; such a subset is called a colour model. There are
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in fact a number of different methods for describing colour, but for image display and storage a
standard model is RGB, for which we may imagine all the colours sitting inside a “colour cube” of
side � as shown in figure 1.23. The colours along the black-white diagonal, shown in the diagram

�

�

�

�

�

�

	  �  �  

Black

	 � �  �  

Red

	  � � �  

Green

	  �  � � 

Blue

	 � �  � � 

Magenta

	 � � � �  

Yellow

	  � � � � 

Cyan

	 � � � � � 

White

Figure 1.23: The colour cube for the RGB colour model

as a dotted line, are the points of the space where all the
�
,

�
,

�
values are equal. They are the

different intensities of grey. We may also think of the axes of the colour cube as being discretized
to integers in the range 0–255.

RGB is the standard for the display of colours: on computer monitors; on TV sets. But it is not
a very good way of describing colours. How, for example, would you define light brown using RGB?
As we shall see also in chapter 11, there are some colours which are not realizable with the RGB
model; in that they would require negative values of one or two of the RGB components. Matlab
handles 24-bit RGB images in much the same way as greyscale. We can save the colour values to a
matrix and view the result:

>> a=imread(’autumn.tif’);
>> figure,imshow(a),pixval on

Note now that the pixel values now consist of a list of three values, giving the red, green and blue
components of the colour of the given pixel.

An important difference between this type of image and a greyscale image can be seen by the
command

>> size(a)

which returns three values: the number of rows, columns, and “pages” of a, which is a three-
dimensional matrix, also called a multidimensional array. Matlab can handle arrays of any di-
mension, and a is an example. We can think of a as being a stack of three matrices, each of the
same size.

To obtain any of the RGB values at a given location, we use similar indexing methods to above.
For example
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>> a(100,200,2)

returns the second colour value (green) at the pixel in row 100 and column 200. If we want all the
colour values at that point, we can use

>> a(100,200,1:3)

However, Matlab allows a convenient shortcut for listing all values along a particular dimension;
just using a colon on its own:

>> a(100,200,:)

A useful function for obtaining RGB values is impixel; the command

>> impixel(a,200,100)

returns the red, green, and blue values of the pixel at column 200, row 100. Notice that the order
of indexing is the same as that which is provided by the pixval on command. This is opposite to
the row, column order for matrix indexing. This command also applies to greyscale images:

>> impixel(g,100,200)

will return three values, but since g is a single two-dimensional matrix, all three values will be the
same.

1.13 Indexed colour images

The command

>> figure,imshow(’emu.tif’),pixval on

produces a nice colour image of an emu. However, the pixel values, rather than being three integers
as they were for the RGB image above, are three fractions between 0 and 1. What is going on here?

If we try saving to a matrix first and then displaying the result:

>> em=imread(’emu.tif’);
>> figure,imshow(em),pixval on

we obtain a dark, barely distinguishable image, with single integer grey values, indicating that em
is being interpreted as a single greyscale image.

In fact the image emu.tif is an example of an indexed image, consisting of two matrices: a
colour map, and an index to the colour map. Assigning the image to a single matrix picks up only
the index; we need to obtain the colour map as well:

>> [em,emap]=imread(’emu.tif’);
>> figure,imshow(em,emap),pixval on

Matlab stores the RGB values of an indexed image as values of type double, with values between
0 and 1.
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Information about your image

A great deal of information can be obtained with the imfinfo function. For example, suppose we
take our indexed image emu.tif from above.

>> imfinfo(’emu.tif’)

ans =

Filename: ’emu.tif’
FileModDate: ’26-Nov-2002 14:23:01’

FileSize: 119804
Format: ’tif’

FormatVersion: []
Width: 331

Height: 384
BitDepth: 8

ColorType: ’indexed’
FormatSignature: [73 73 42 0]

ByteOrder: ’little-endian’
NewSubfileType: 0
BitsPerSample: 8

Compression: ’PackBits’
PhotometricInterpretation: ’RGB Palette’

StripOffsets: [16x1 double]
SamplesPerPixel: 1

RowsPerStrip: 24
StripByteCounts: [16x1 double]

XResolution: 72
YResolution: 72

ResolutionUnit: ’Inch’
Colormap: [256x3 double]

PlanarConfiguration: ’Chunky’
TileWidth: []

TileLength: []
TileOffsets: []

TileByteCounts: []
Orientation: 1

FillOrder: 1
GrayResponseUnit: 0.0100

MaxSampleValue: 255
MinSampleValue: 0

Thresholding: 1

Much of this information is not useful to us; but we can see the size of the image in pixels, the size
of the file (in bytes), the number of bits per pixel (this is given by BitDepth), and the colour type
(in this case “indexed”).
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For comparison, let’s look at the output of a true colour file (showing only the first few lines of
the output):

>> imfinfo(’flowers.tif’)

ans =

Filename: [1x57 char]
FileModDate: ’26-Oct-1996 02:11:09’

FileSize: 543962
Format: ’tif’

FormatVersion: []
Width: 500

Height: 362
BitDepth: 24

ColorType: ’truecolor’

Now we shall test this function on a binary image:

>> imfinfo(’text.tif’)

ans =

Filename: [1x54 char]
FileModDate: ’26-Oct-1996 02:12:23’

FileSize: 3474
Format: ’tif’

FormatVersion: []
Width: 256

Height: 256
BitDepth: 1

ColorType: ’grayscale’

What is going on here? We have a binary image, and yet the colour type is given as “grayscale”.
The fact is that Matlab does not distinguish between greyscale and binary images: a binary image
is just a special case of a greyscale image which has only two intensities. However, we can see that
text.tif is a binary image since the number of bits per pixel is only one.

1.14 Data types and conversions

Elements inMatlab matrices may have a number of different numeric data types; the most common
are listed in table 1.1. There are others, but those listed will be sufficient for all our work with
images. These data types are also functions, we can convert from one type to another. For example:

>> a=23;
>> b=uint8(a);
>> b

b =
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Data type Description Range
int8 8-bit integer � � � � — 127
uint8 8-bit unsigned integer 0 — 255
int16 16-bit integer �

� � (
% �

— 32767
uint16 16-bit unsigned integer 0 — 65535
double Double precision real number Machine specific

Table 1.1: Data types in Matlab

23

>> whos a b
Name Size Bytes Class

a 1x1 8 double array
b 1x1 1 uint8 array

Even though the variables a and b have the same numeric value, they are of different data types. An
important consideration (of which we shall more) is that arithmetic operations are not permitted
with the data types int8, int16, uint8 and uint16.

A greyscale image may consist of pixels whose values are of data type uint8. These images are
thus reasonably efficient in terms of storage space, since each pixel requires only one byte. However,
arithmetic operations are not permitted on this data type; a uint8 image must be converted to
double before any arithmetic is attempted.

We can convert images from one image type to another. Table 1.2 lists all of Matlab’s functions
for converting between different image types. Note that the gray2rgb function, does not create a

Function Use Format
ind2gray Indexed to Greyscale y=ind2gray(x,map);
gray2ind Greyscale to indexed [y,map]=gray2ind(x);
rgb2gray RGB to greyscale y=rgb2gray(x);
gray2rgb Greyscale to RGB y=gray2rgb(x);
rgb2ind RGB to indexed [y,map]=rgb2ind;
ind2rgb Indexed to RGB y=ind2rgb(x,map);

Table 1.2: Converting images in Matlab

colour image, but an image all of whose pixel colours were the same as before. This is done by
simply replicating the grey values of each pixel: greys in an RGB image are obtained by equality of
the red, green and blue values.

1.15 Basics of image display

An image may be represented as a matrix of the grey values of its pixels. The problem here is to
display that matrix on the computer screen. There are many factors which will effect the display;
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they include:

1. ambient lighting,

2. the monitor type and settings,

3. the graphics card,

4. monitor resolution.

The same image may appear very different when viewed on a dull CRT monitor or on a bright LCD
monitor. The resolution can also affect the display of an image; a higher resolution may result in
the image taking up less physical area on the screen, but this may be counteracted by a loss in the
colour depth: the monitor may be only to display 24-bit colour at low resolutions. If the monitor
is bathed in bright light (sunlight, for example), the display of the image may be compromised.
Furthermore, the individual’s own visual system will affect the appearance of an image: the same
image, viewed by two people, may appear to have different characteristics to each person. For our
purpose, we shall assume that the computer set up is as optimal as is possible, and the monitor is
able to accurately reproduce the necessary grey values or colours in any image.

A very basic Matlab function for image display is image. This function simply displays a
matrix as an image. However, it may not give necessarily very good results. For example:

>> c=imread(’cameraman.tif’);
>> image(c)

will certainly display the cameraman, but possibly in an odd mixture of colours, and with some
stretching. The strange colours come from the fact that the image command uses the current colour
map to assign colours to the matrix elements. The default colour map is called jet, and consists of
64 very bright colours, which is inappropriate for the display of a greyscale image.

To display the image properly, we need to add several extra commands to the image line.

1. truesize, which displays one matrix element (in this case an image pixel) for each screen
pixel. More formally, we may use truesize([256 256]) where the vector components give
the number of screen pixels vertically and horizontally to use in the display. If the vector is
not specified, it defaults to the image size.

2. axis off which turns off the axis labelling,

3. colormap(gray(247)), which adjusts the image colour map to use shades of grey only. We
can find the number of grey levels used by the cameraman image with

>> size(unique(c))

ans =

247 1

Since the cameraman image thus uses 247 different grey levels, we only need that number of
greys in the colour map.

Thus a complete command for viewing this image will be
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>> image(c),truesize,axis off, colormap(gray(247))

We may to adjust the colour map to use less or more colours; however this can have a dramatic
effect on the result. The command

>> image(c),truesize,axis off, colormap(gray(512))

will produce a dark image. This happens because only the first 247 elements of the colour map will
be used by the image for display, and these will all be in the first half of the colour map; thus all
dark greys. On the other hand,

>> image(c),truesize,axis off, colormap(gray(128))

will produce a very light image, because any pixel with grey level higher than 128 will simply pick
that highest grey value (which is white) from the colour map.

The image command works well for an indexed colour image, as long as we remember to use
imread to pick up the colour map as well:

>> [x,map]=imread(’cat.tif’);
>> image(x),truesize,axis off,colormap(map)

For true colour images, the image data will be read (by imread) as a three dimensional array.
In such a case, image will ignore the current colour map, and assign colours to the display based
on the values in the array. So

>> t=imread(’twins.tif’);
>> image(t),truesize,axis off

will produce the correct twins image.
In general the image function can be used to display any image or matrix. However, there is a

command which is more convenient, and does most of the work of colour mapping for us; we discuss
this in the next section.

1.16 The imshow function

Greyscale images

We have seen that if x is a matrix of type uint8, then the command

imshow(x)

will display x as an image. This is reasonable, since the data type uint8 restricts values to be
integers between 0 and 255. However, not all image matrices come so nicely bundled up into this
data type, and lots of Matlab image processing commands produces output matrices which are of
type double. We have two choices with a matrix of this type:

1. convert to type uint8 and then display,

2. display the matrix directly.
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The second option is possible because imshow will display a matrix of type double as a greyscale
image as long as the matrix elements are between 0 and 1. Suppose we take an image and convert
it to type double:

>> c=imread(’caribou.tif’);
>> cd=double(c);
>> imshow(c),figure,imshow(cd)

The results are shown in figure 1.24.

(a) The original image (b) After conversion to type double

Figure 1.24: An attempt at data type conversion

However, as you can see, figure 1.24(b) doesn’t look much like the original picture at all! This is
because for a matrix of type double, the imshow function expects the values to be between 0 and 1,
where 0 is displayed as black, and 1 is displayed as white. A value � with

 �� � � � is displayed as
grey scale

�
� ��� ��� . Conversely, values greater than 1 will be displayed as 1 (white) and values less

than 0 will be displayed as zero (black). In the caribou image, every pixel has value greater than
or equal to 1 (in fact the minimum value is 21), so that every pixel will be displayed as white. To
display the matrix cd, we need to scale it to the range 0—1. This is easily done simply by dividing
all values by 255:

>> imshow(cd/255)

and the result will be the caribou image as shown in figure 1.24(a).
We can vary the display by changing the scaling of the matrix. Results of the commands:

>> imshow(cd/512)
>> imshow(cd/128)

are shown in figures 1.25.
Dividing by 512 darkens the image, as all matrix values are now between 0 and 0.5, so that the

brightest pixel in the image is a mid-grey. Dividing by 128 means that the range is 0—2, and all
pixels in the range 1—2 will be displayed as white. Thus the image has an over-exposed, washed-out
appearance.
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(a) The matrix cd divided by 512 (b) The matrix cd divided by 128

Figure 1.25: Scaling by dividing an image matrix by a scalar

The display of the result of a command whose output is a matrix of type double can be greatly
affected by a judicious choice of a scaling factor.

We can convert the original image to double more properly using the function im2double. This
applies correct scaling so that the output values are between 0 and 1. So the commands

>> cd=im2double(c);
>> imshow(cd)

will produce a correct image. It is important to make the distinction between the two functions
double and im2double: double changes the data type but does not change the numeric values;
im2double changes both the numeric data type and the values. The exception of course is if the
original image is of type double, in which case im2double does nothing. Although the command
double is not of much use for direct image display, it can be very useful for image arithmetic. We
have seen examples of this above with scaling.

Corresponding to the functions double and im2double are the functions uint8 and im2uint8.
If we take our image cd of type double, properly scaled so that all elements are between 0 and 1,
we can convert it back to an image of type uint8 in two ways:

>> c2=uint8(255*cd);
>> c3=im2uint8(cd);

Use of im2uint8 is to be preferred; it takes other data types as input, and always returns a correct
result.

Binary images

Recall that a binary image will have only two values: 0 and 1. Matlab does not have a binary
data type as such, but it does have a logical flag, where uint8 values as 0 and 1 can be interpreted
as logical data. The logical flag will be set by the use of relational operations such as ==, < or >
or any other operations which provide a yes/no answer. For example, suppose we take the caribou
matrix and create a new matrix with
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>> cl=c>120;

(we will see more of this type of operation in chapter 2.) If we now check all of our variables with
whos, the output will include the line:

cl 256x256 65536 uint8 array (logical)

This means that the command

>> imshow(cl)

will display the matrix as a binary image; the result is shown in figure 1.26.

(a) The caribou image turned binary (b) After conversion to type uint8

Figure 1.26: Making the image binary

Suppose we remove the logical flag from cl; this can be done by a simple command:

>> cl = +cl;

Now the output of whos will include the line:

cl 256x256 65536 uint8 array

If we now try to display this matrix with imshow, we obtain the result shown in figure 1.26(b). A
very disappointing image! But this is to be expected; in a matrix of type uint8, white is 255, 0 is
black, and 1 is a very dark grey–indistinguishable from black.

To get back to a viewable image, we can either turn the logical flag back on, and the view the
result:

>> imshow(logical(cl))

or simply convert to type double:

>> imshow(double(cl))

Both these commands will produce the image seen in figure 1.26.
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1.17 Bit planes

Greyscale images can be transformed into a sequence of binary images by breaking them up into
their bit-planes. If we consider the grey value of each pixel of an 8-bit image as an 8-bit binary word,
then the 0th bit plane consists of the last bit of each grey value. Since this bit has the least effect
in terms of the magnitude of the value, it is called the least significant bit, and the plane consisting
of those bits the least significant bit plane. Similarly the 7th bit plane consists of the first bit in
each value. This bit has the greatest effect in terms of the magnitude of the value, so it is called
the most significant bit, and the plane consisting of those bits the most significant bit plane.

If we take a greyscale image, we start by making it a matrix of type double; this means we can
perform arithmetic on the values.

>> c=imread(’cameraman.tif’);
>> cd=double(c);

We now isolate the bit planes by simply dividing the matrix cd by successive powers of 2, throwing
away the remainder, and seeing if the final bit is 0 or 1. We can do this with the mod function.

>> c0=mod(cd,2);
>> c1=mod(floor(cd/2),2);
>> c2=mod(floor(cd/4),2);
>> c3=mod(floor(cd/8),2);
>> c4=mod(floor(cd/16),2);
>> c5=mod(floor(cd/32),2);
>> c6=mod(floor(cd/64),2);
>> c7=mod(floor(cd/128),2);

These are all shown in figure 1.27. Note that the least significant bit plane, c0, is to all intents and
purposes a random array, and that as the index value of the bit plane increases, more of the image
appears. The most significant bit plane, c7, is actually a threshold of the image at level 127:

>> ct=c>127;
>> all(c7(:)==ct(:))

ans =

1

We shall discuss thresholding in chapter 7.
We can recover and display the original image with

>> cc=2*(2*(2*(2*(2*(2*(2*c7+c6)+c5)+c4)+c3)+c2)+c1)+c0;
>> imshow(uint8(cc))

1.18 Spatial Resolution

Spatial resolution is the density of pixels over the image: the greater the spatial resolution, the more
pixels are used to display the image. We can experiment with spatial resolution with Matlab’s
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c0 c1 c2

c3 c4 c5

c6 c7

Figure 1.27: The bit planes of an 8-bit greyscale image
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imresize function. Suppose we have an � �
% � � �

%
8-bit greyscale image saved to the matrix x.

Then the command

imresize(x,1/2);

will halve the size of the image. It does this by taking out every other row and every other column,
thus leaving only those matrix elements whose row and column indices are even:
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If we apply imresize to the result with the parameter 2 rather than 1/2, all the pixels are repeated
to produce an image with the same size as the original, but with half the resolution in each direction:
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The effective resolution of this new image is only � � � � � � � . We can do all this in one line:

x2=imresize(imresize(x,1/2),2);

By changing the parameters of imresize, we can change the effective resolution of the image to
smaller amounts:

Command Effective resolution
imresize(imresize(x,1/4),4);

% � � % �

imresize(imresize(x,1/8),8);
� � � � �

imresize(imresize(x,1/16),16); � % � � %
imresize(imresize(x,1/32),32);

�)� �

To see the effects of these commands, suppose we apply them to the image newborn.tif:

x=imread(’newborn.tif’);

The effects of increasing blockiness or pixelization become quite pronounced as the resolution de-
creases; even at � � � � � � � resolution fine detail, such as the edges of the baby’s fingers, are less
clear, and at

% � � % �
all edges are now quite blocky. At

� � � � � the image is barely recognizable,
and at � % � � % and

� � �
the image becomes unrecognizable.
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(a) The original image (b) at � � � � � � � resolution

Figure 1.28: Reducing resolution of an image

(a) At
% � � % �

resolution (b) At
� � � � � resolution

Figure 1.29: Further reducing the resolution of an image



Chapter 2

Point Processing

2.1 Introduction

Any image processing operation transforms the grey values of the pixels. However, image processing
operations may be divided into into three classes based on the information required to perform the
transformation. From the most complex to the simplest, they are:

1. Transforms. A “transform” represents the pixel values in some other, but equivalent form.
Transforms allow for some very efficient and powerful algorithms, as we shall see later on. We
may consider that in using a transform, the entire image is processed as a single large block.
This may be illustrated by the diagram shown in figure 2.1.

�

�

�

Image Transformed
image

Processed
transformed

image

Processed
original
image

Transform

Inverse transform

Image
processing
operation

Figure 2.1: Schema for transform processing

2. Neighbourhood processing. To change the grey level of a given pixel we need only know
the value of the grey levels in a small neighbourhood of pixels around the given pixel.

3. Point operations. A pixel’s grey value is changed without any knowledge of its surrounds.

Although point operations are the simplest, they contain some of the most powerful and widely
used of all image processing operations. They are especially useful in image pre-processing, where
an image is required to be modified before the main job is attempted.

37
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2.2 Arithmetic operations

These operations act by applying a simple function
��� � 	�� 


to each grey value in the image. Thus
� 	�� 
 is a function which maps the range

 � � � � ��� onto itself.
Simple functions include adding or subtract a constant value to each pixel:

��� �����
or multiplying each pixel by a constant:

����� � �
In each case we may have to fiddle the output slightly in order to ensure that the results are integers
in the

 � � � � ��� range. We can do this by first rounding the result (if necessary) to obtain an integer,
and then “clipping” the values by setting:

��� � � ��� if �	� � ��� ,
 

if � �  
.

We can obtain an understanding of how these operations affect an image by plotting � � � 	�� 
 .
Figure 2.2 shows the result of adding or subtracting 128 from each pixel in the image. Notice that

 
 

� ���

� ���

Old values

N
ew

va
lu
es

Adding 128 to each pixel

 
 

� ���

� ���

Old values

N
ew

va
lu
es

Subtracting 128 from each pixel

Figure 2.2: Adding and subtracting a constant

when we add 128, all grey values of 127 or greater will be mapped to 255. And when we subtract
128, all grey values of 128 or less will be mapped to 0. By looking at these graphs, we observe that
in general adding a constant will lighten an image, and subtracting a constant will darken it.

We can test this on the “blocks” image blocks.tif, which we have seen in figure 1.4. We start
by reading the image in:

>> b=imread(’blocks.tif’);
>> whos b

Name Size Bytes Class

b 256x256 65536 uint8 array
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The point of the second command was to find the numeric data type of b; it is uint8. The unit8
data type is used for data storage only; we can’t perform arithmetic operations. If we try, we just
get an error message:

>> b1=b+128
??? Error using ==> +
Function ’+’ not defined for variables of class ’uint8’.

We can get round this in two ways. We can first turn b into a matrix of type double, add the 128,
and then turn back to uint8 for display:

>> b1=uint8(double(b)+128);

A second, and more elegant way, is to use the Matlab function imadd which is designed precisely
to do this:

>> b1=imadd(b,128);

Subtraction is similar; we can transform out matrix in and out of double, or use the imsubtract
function:

>> b2=imsubtract(b,128);

And now we can view them:

>> imshow(b1),figure,imshow(b2)

and the results are seen in figure 2.3.

b1: Adding 128 b2: Subtracting 128

Figure 2.3: Arithmetic operations on an image: adding or subtracting a constant

We can also perform lightening or darkening of an image by multiplication; figure 2.4 shows
some examples of functions which will have these effects. To implement these functions, we use
the immultiply function. Table 2.1 shows the particular commands required to implement the
functions of figure 2.4. All these images can be viewed with imshow; they are shown in figure 2.5.
Compare the results of darkening b2 and b3. Note that b3, although darker than the original, is
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Figure 2.4: Using multiplication and division

��� ��� � b3=immultiply(b,0.5); or b3=imdivide(b,2)��� � � b4=immultiply(b,2);��� ��� � � � � � b5=imadd(immultiply(b,0.5),128); or b5=imadd(imdivide(b,2),128);

Table 2.1: Implementing pixel multiplication by Matlab commands

b3: � � ��� � b4: � � � � b5: ��� ��� � � � � �

Figure 2.5: Arithmetic operations on an image: multiplication and division
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still quite clear, whereas a lot of information has been lost by the subtraction process, as can be
seen in image b2. This is because in image b2 all pixels with grey values 128 or less have become
zero.

A similar loss of information has occurred in the images b1 and b4. Note in particular the
edges of the light coloured block in the bottom centre; in both b1 and b4 the right hand edge has
disappeared. However, the edge is quite visible in image b5.

Complements

The complement of a greyscale image is its photographic negative. If an image matrix m is of type
double and so its grey values are in the range

 �  to � �  , we can obtain its negative with the
command

>> 1-m

If the image is binary, we can use

>> ~m

If the image is of type uint8, the best approach is the imcomplement function. Figure 2.6 shows
the complement function ��� � ��� �

� , and the result of the commands

>> bc=imcomplement(b);
>> imshow(bc)
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Figure 2.6: Image complementation

Interesting special effects can be obtained by complementing only part of the image; for example by
taking the complement of pixels of grey value 128 or less, and leaving other pixels untouched. Or
we could take the complement of pixels which are 128 or greater, and leave other pixels untouched.
Figure 2.7 shows these functions. The effect of these functions is called solarization.
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Figure 2.7: Part complementation

2.3 Histograms

Given a greyscale image, its histogram consists of the histogram of its grey levels; that is, a graph
indicating the number of times each grey level occurs in the image. We can infer a great deal about
the appearance of an image from its histogram, as the following examples indicate:

� In a dark image, the grey levels (and hence the histogram) would be clustered at the lower
end:

� In a uniformly bright image, the grey levels would be clustered at the upper end:

� In a well contrasted image, the grey levels would be well spread out over much of the range:

We can view the histogram of an image in Matlab by using the imhist function:

>> p=imread(’pout.tif’);
>> imshow(p),figure,imhist(p),axis tight

(the axis tight command ensures the axes of the histogram are automatically scaled to fit all the
values in). The result is shown in figure 2.8. Since the grey values are all clustered together in the
centre of the histogram, we would expect the image to be poorly contrasted, as indeed it is.

Given a poorly contrasted image, we would like to enhance its contrast, by spreading out its
histogram. There are two ways of doing this.

2.3.1 Histogram stretching (Contrast stretching)

Suppose we have an image with the histogram shown in figure 2.9, associated with a table of the
numbers ��� of grey values:

Grey level
�  � �

� � � % ( � � �  � � � � � � � � � �
��� � �     (  � �  � � (  ���      � �
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Figure 2.8: The image pout.tif and its histogram
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Figure 2.9: A histogram of a poorly contrasted image, and a stretching function
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(with � � � %  
, as before.) We can stretch the grey levels in the centre of the range out by applying

the piecewise linear function shown at the right in figure 2.9. This function has the effect of stretching
the grey levels

�
–
�
to grey levels � – � � according to the equation:

� � � � � �
�

�

� 	 �
�

� 

� �

where
�
is the original grey level and

�
its result after the transformation. Grey levels outside this

range are either left alone (as in this case) or transformed according to the linear functions at the
ends of the graph above. This yields:

� � % ( � �

� � � � � � � �

and the corresponding histogram:

���


 �

���

���

�����

�����

� � � � 
 � � " � � ��� ��� ��� ��� � 
 ���

which indicates an image with greater contrast than the original.

Use of imadjust

To perform histogram stretching in Matlab the imadjust function may be used. In its simplest
incarnation, the command

imadjust(im,[a,b],[c,d])

stretches the image according to the function shown in figure 2.10. Since imadjust is designed to

� � �

�

� �

Figure 2.10: The stretching function given by imadjust
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work equally well on images of type double, uint8 or uint16 the values of � , � , � and
�
must be

between 0 and 1; the function automatically converts the image (if needed) to be of type double.
Note that imadjust does not work quite in the same way as shown in figure 2.9. Pixel values

less than � are all converted to � , and pixel values greater than � are all converted to
�
. If either of

[a,b] or [c,d] are chosen to be [0,1], the abbreviation [] may be used. Thus, for example, the
command

>> imadjust(im,[],[])

does nothing, and the command

>> imadjust(im,[],[1,0])

inverts the grey values of the image, to produce a result similar to a photographic negative.
The imadjust function has one other optional parameter: the gamma value, which describes

the shape of the function between the coordinates 	 � � � 
 and 	 � � � 
 . If gamma is equal to 1, which is
the default, then a linear mapping is used, as shown above in figure 2.10. However, values less than
one produce a function which is concave downward, as shown on the left in figure 2.11, and values
greater than one produce a figure which is concave upward, as shown on the right in figure 2.11.

� � �

�

� �

gamma
� �

� � �

�

� �

gamma � �
Figure 2.11: The imadjust function with gamma not equal to 1

The function used is a slight variation on the standard line between two points:

��� � �
�

�

�
�

����� 	 �
�

� 

� � �

Use of the gamma value alone can be enough to substantially change the appearance of the image.
For example:

>> t=imread(’tire.tif’);
>> th=imadjust(t,[],[],0.5);
>> imshow(t),figure,imshow(th)

produces the result shown in figure 2.12.
We may view the imadjust stretching function with the plot function. For example,

>> plot(t,th,’.’),axis tight

produces the plot shown in figure 2.13. Since p and ph are matrices which contain the original
values and the values after the imadjust function, the plot function simply plots them, using dots
to do it.
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Figure 2.12: The tire image and after adjustment with the gamma value
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Figure 2.13: The function used in figure 2.12
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A piecewise linear stretching function

We can easily write our own function to perform piecewise linear stretching as shown in figure 2.14.
To do this, we will make use of the find function, to find the pixel values in the image between � �

and � ��� � . Since the line between the coordinates 	 � � � �
� 
 and 	 � ��� � � �

��� � 
 has the equation

� � � � � � � 
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� �

� 


Figure 2.14: A piecewise linear stretching function
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the heart of our function will be the lines

pix=find(im >= a(i) & im < a(i+1));
out(pix)=(im(pix)-a(i))*(b(i+1)-b(i))/(a(i+1)-a(i))+b(i);

where im is the input image and out is the output image. A simple procedure which takes as inputs
images of type uint8 or double is shown in figure 2.15. As an example of the use of this function:

>> th=histpwl(t,[0 .25 .5 .75 1],[0 .75 .25 .5 1]);
>> imshow(th)
>> figure,plot(t,th,’.’),axis tight

produces the figures shown in figure 2.16.

2.3.2 Histogram equalization

The trouble with any of the above methods of histogram stretching is that they require user input.
Sometimes a better approach is provided by histogram equalization, which is an entirely automatic
procedure. The idea is to change the histogram to one which is uniform; that is that every bar on
the histogram is of the same height, or in other words that each grey level in the image occurs with
the saem frequency. In practice this is generally not possible, although as we shall see the result of
histogram equalization provides very good results.

Suppose our image has
�

different grey levels
 � � � � � � � � � � � , and that grey level

�
occurs

� � times in the image. Suppose also that the total number of pixels in the image is � (so that
� � � � � � � � ������� � ��� ! � � � . To transform the grey levels to obtain a better contrasted image,
we change grey level

�
to�

� � � � � �	����� � � �

� � 	 �
� � 
��

and this number is rounded to the nearest integer.
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function out = histpwl(im,a,b)
%
% HISTPWL(IM,A,B) applies a piecewise linear transformation to the pixel values
% of image IM, where A and B are vectors containing the x and y coordinates
% of the ends of the line segments. IM can be of type UINT8 or DOUBLE,
% and the values in A and B must be between 0 and 1.
%
% For example:
%
% histpwl(x,[0,1],[1,0])
%
% simply inverts the pixel values.
%
classChanged = 0;
if ~isa(im, ’double’),

classChanged = 1;
im = im2double(im);

end

if length(a) ~= length (b)
error(’Vectors A and B must be of equal size’);

end

N=length(a);
out=zeros(size(im));

for i=1:N-1
pix=find(im>=a(i) & im<a(i+1));
out(pix)=(im(pix)-a(i))*(b(i+1)-b(i))/(a(i+1)-a(i))+b(i);

end

pix=find(im==a(N));
out(pix)=b(N);

if classChanged==1
out = uint8(255*out);

end

Figure 2.15: A Matlab function for applying a piecewise linear stretching function
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Figure 2.16: The tire image and after adjustment with the gamma value
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Figure 2.17: Another histogram indicating poor contrast

An example

Suppose a 4-bit greyscale image has the histogram shown in figure 2.17. associated with a table of
the numbers ��� of grey values:

Grey level
�  � � � � � % ( � � �  � � � � � � � � � �
��� � �         (  � �  � � �  �    
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Figure 2.18: The histogram of figure 2.17 after equalization

(with � � � %  
.) We would expect this image to be uniformly bright, with a few dark dots on it. To

equalize this histogram, we form running totals of the � � , and multiply each by � � � � %  � � � �
�
:

Grey level
�

��� � ��� 	 � � �
� 
 � ��� Rounded value

 � � � �  � % � �
�  � �  � % � �

�  � �  � % � ��  � �  � % � ��  � �  � % � ��  � �  � % � �%  � �  � % � �(  � �  � % � ��  � �  � % � �� (  ��� � � % � �

�  � �  � ��� � � � � �

� � � � �
�  �  �  

� � �  � �  � � � � � � �
� � �  � %  � � � �
� �  � %  � � � �
� �  � %  � � � �

We now have the following transformation of grey values, obtained by reading off the first and last
columns in the above table:

Original grey level
�  � � � � � % ( � � �  � � � � � � � � � �

Final grey level
� � � � � � � � � � � � �  � � � � � � � �

and the histogram of the
�
values is shown in figure 2.18. This is far more spread out than the

original histogram, and so the resulting image should exhibit greater contrast.
To apply histogram equalization in Matlab, use the histeq function; for example:

>> p=imread(’pout.tif’);
>> ph=histeq(p);
>> imshow(ph),figure,imhist(ph),axis tight
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applies histogram equalization to the pout image, and produces the resulting histogram. These
results are shown in figure 2.19. Notice the far greater spread of the histogram. This corresponds
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Figure 2.19: The histogram of figure 2.8 after equalization

to the greater increase of contrast in the image.
We give one more example, that of a very dark image. We can obtain a dark image by taking

an image and using imdivide.

>> en=imread(’engineer.tif’);
>> e=imdivide(en,4);

Since the matrix e contains only low values it will appear very dark when displayed. We can display
this matrix and its histogram with the usual commands:

>> imshow(e),figure,imhist(e),axis tight

and the results are shown in figure 2.20.
As you see, the very dark image has a corresponding histogram heavily clustered at the lower

end of the scale.
But we can apply histogram equalization to this image, and display the results:

>> eh=histeq(e);
>> imshow(eh),figure,imhist(eh),axis tight

and the results are shown in figure 2.21.

Why it works

Consider the histogram in figure 2.17. To apply histogram stretching, we would need to stretch out
the values between grey levels 9 and 13. Thus, we would need to apply a piecewise function similar
to that shown in figure 2.9.

Let’s consider the cumulative histogram, which is shown in figure 2.22. The dashed line is simply
joining the top of the histogram bars. However, it can be interpreted as an appropriate histogram
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Figure 2.20: The darkened version of engineer.tif and its histogram
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Figure 2.21: The image from 2.20 equalized and its histogram
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Figure 2.22: The cumulative histogram
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stretching function. To do this, we need to scale the � values so that they are between
 
and � � ,

rather than
 
and

� %  
. But this is precisely the method described in section 2.3.2.

As we have seen, none of the example histograms, after equalization, are uniform. This is a result
of the discrete nature of the image. If we were to treat the image as a continuous function

� 	�� � � 
 ,
and the histogram as the area between different contours (see for example Castleman [1], then we
can treat the histogram as a probability density function. But the corre‘sponding cumulative density
function will always have a uniform histogram; see for example Hogg and Craig [6].

2.4 Lookup tables

Point operations can be performed very effectively by the use of a lookup table, known more simply as
an LUT. For operating on images of type uint8, such a table consists of a single array of 256 values,
each value of which is an integer in the range

 � � � � ��� . Then our operation can be implemented by
replacing each pixel value � by the corresponding value ��� in the table.

For example, the LUT corresponding to division by 2 looks like:

Index:
 � � � � � � � � � �  � � � � � � � � � � �

�
� ���

LUT:
  � � � � � � � � � � � � � � �

% � �
% � � ( � � (

This means, for example, that a pixel with value 4 will be replaced with 2; a pixel with value 253
will be replaced with value 126.

If T is a lookup table in Matlab, and im is our image, the the lookup table can be applied by
the simple command

T(im)

For example, suppose we wish to apply the above lookup table to the blocks image. We can create
the table with

>> T=uint8(floor(0:255)/2);

apply it to the blocks image b with

>> b2=T(b);

The image b2 is of type uint8, and so can be viewed directly with imshow.
As another example, suppose we wish to apply an LUT to implement the contrast stretching

function shown in figure 2.23. Given the equation used in section 2.3.1, the equations of the three
lines used are:

� � % �
� % � �

� � � � � �

% �

� %  �

� % 	�� �

� % 

� % � �

� � � ��� � � � �
� ��� � � %  

	��
� � %  
 � � � � �

and these equations can be written more simply as

� �  � %�%�% ( ���
� � � � � � � � �
� �  � %�% � � � � ��� � � � � ( �



Chapter 3

Neighbourhood Processing

3.1 Introduction

We have seen in chapter 2 that an image can be modified by applying a particular function to each
pixel value. Neighbourhood processing may be considered as an extension of this, where a function
is applied to a neighbourhood of each pixel.

The idea is to move a “mask”: a rectangle (usually with sides of odd length) or other shape over
the given image. As we do this, we create a new image whose pixels have grey values calculated
from the grey values under the mask, as shown in figure 3.1. The combination of mask and function

Pixel at position 	�� � � 


Mask

Original image

Pixel at position 	�� � � 


Image after filtering

Figure 3.1: Using a spatial mask on an image

is called a filter. If the function by which the new grey value is calculated is a linear function of all
the grey values in the mask, then the filter is called a linear filter.

A linear filter can be implemented by multiplying all elements in the mask by corresponding
elements in the neighbourhood, and adding up all these products. Suppose we have a

� � �
mask

as illustrated in figure 3.1. Suppose that the mask values are given by:

57
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���������	��

� ���������	����� ������������� ���������	��� ����������

�

�������	��
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�

�������	��

� �������	����� ����������� �������	��� ��������

�

and that corresponding pixel values are

�����	����������
�� ������������� ���!� �����"�#���$�%� ��������������&'�!� �������������(&�
��

���������)�*

� ���������+�#�!� ���������%� ����������&,�!� ����������&#
��

������&-��������
�� �����.&'����� ���!� �����/&,���$�%� �����.&'������&'�!� �����.&'�����(&�
��

We now multiply and add:
�0

132 ! �

�0
4 2 ! �

$ 	�5 � � 
 � 	 � �65 � � � � 
��

A diagram illustrating the process for performing spatial filtering is given in figure 3.2.
Spatial filtering thus requires three steps:

1. position the mask over the current pixel,

2. form all products of filter elements with the corresponding elements of the neighbourhood,

3. add up all the products.

This must be repeated for every pixel in the image.
Allied to spatial filtering is spatial convolution. The method for performing a convolution is the

same as that for filtering, except that the filter must be rotated by � �  87 before multiplying and
adding. Using the

$ 	 � � � 
 and � 	 � � � 
 notation as before, the output of a convolution with a
��� �

mask for a single pixel is
�0

132 ! �

�0
4 2 ! �

$ 	
�

5 �
� � 
 � 	 � �65 � � � � 
��
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Figure 3.2: Performing spatial filtering
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Note the negative signs on the indices of
$
. The same result can be achieved with

�0
132 ! �

�0
4 2 ! �

$ 	�5 � � 
 � 	 � �

5 � �
� � 
��

Here we have rotated the image pixels by � �  �7 ; this does not of course affect the result. The
importance of convolution will become apparent when we investigate the Fourier transform, and
the convolution theorem. Note also that in practice, most filter masks are rotationally symmetric,
so that spatial filtering and spatial convolution will produce the same output.

An example: One important linear filter is to use a
� � �

mask and take the average of all nine
values within the mask. This value becomes the grey value of the corresponding pixel in the new
image. This operation may be described as follows:

� � �
� � �
� � �

� � �
�
	 � � � � � � � � � � � ��� � � � � 


where
�
is grey value of the current pixel in the original image, and the average is the grey value of

the corresponding pixel in the new image.
To apply this to an image, consider the

� � �
“image” obtained by:

>> x=uint8(10*magic(5))

x =

170 240 10 80 150
230 50 70 140 160
40 60 130 200 220

100 120 190 210 30
110 180 250 20 90

We may regard this array as being made of nine overlapping
� � �

neighbourhoods. The output of
our working will thus consist only of nine values. We shall see later how to obtain 25 values in the
output.

Consider the top left
� � �

neighbourhood of our image x:

170 240 10 80 150

230 50 70 140 160

40 60 130 200 220

100 120 190 210 30

110 180 250 20 90

Now we take the average of all these values:
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>> mean2(x(1:3,1:3))

ans =

111.1111

which can be rounded to 111. Now we can move to the second neighbourhood:

170 240 10 80 150

230 50 70 140 160

40 60 130 200 220

100 120 190 210 30

110 180 250 20 90

and take its average:

>> mean2(x(1:3,2:4))

ans =

108.8889

and this can be rounded either down to 108, or to the nearest integer 109. If we continue in this
manner, the following output is obtained:

111.1111 108.8889 128.8889
110.0000 130.0000 150.0000
131.1111 151.1111 148.8889

This array is the result of filtering x with the
� � �

averaging filter.

3.2 Notation

It is convenient to describe a linear filter simply in terms of the coefficients of all the grey values of
pixels within the mask. This can be written as a matrix.

The averaging filter above, for example, could have its output written as

�
�

� � �
�

� � �
�
� � �

�
� � �

�
� � �

�
� � �

�
� � �

� � � �
�
�

and so this filter can be described by the matrix��
�
�
�

�
�

�
��

�

�
�

�
��

�

�
�

�
�

���
� � �

�

��
� � � �
� � �
� � �

���
�
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An example: The filter��
� � � � �

� �
�

� �
� � � �

���
�

would operate on grey values as

� � �
� � �
� � �

� � �
� � � � �

� �
� � � �

� �
� ���

� ��� � �

Edges of the image

There is an obvious problem in applying a filter—what happens at the edge of the image, where
the mask partly falls outside the image? In such a case, as illustrated in figure 3.3 there will be a
lack of grey values to use in the filter function.

Figure 3.3: A mask at the edge of an image

There are a number of different approaches to dealing with this problem:

Ignore the edges. That is, the mask is only applied to those pixels in the image for with the
mask will lie fully within the image. This means all pixels except for the edges, and results
in an output image which is smaller than the original. If the mask is very large, a significant
amount of information may be lost by this method.

We applied this method in our example above.

“Pad” with zeros. We assume that all necessary values outside the image are zero. This gives us
all values to work with, and will return an output image of the same size as the original, but
may have the effect of introducing unwanted artifacts (for example, edges) around the image.

3.3 Filtering in Matlab

The filter2 function does the job of linear filtering for us; its use is

filter2(filter,image,shape)

and the result is a matrix of data type double. The parameter shape is optional, it describes the
method for dealing with the edges:

� filter2(filter,image,’same’) is the default; it produces a matrix of equal size to the
original image matrix. It uses zero padding:
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>> a=ones(3,3)/9

a =

0.1111 0.1111 0.1111
0.1111 0.1111 0.1111
0.1111 0.1111 0.1111

>> filter2(a,x,’same’)

ans =

76.6667 85.5556 65.5556 67.7778 58.8889
87.7778 111.1111 108.8889 128.8889 105.5556
66.6667 110.0000 130.0000 150.0000 106.6667
67.7778 131.1111 151.1111 148.8889 85.5556
56.6667 105.5556 107.7778 87.7778 38.8889

� filter2(filter,image,’valid’) applies the mask only to “inside” pixels. The result will
always be smaller than the original:

>> filter2(a,x,’valid’)

ans =

111.1111 108.8889 128.8889
110.0000 130.0000 150.0000
131.1111 151.1111 148.8889

The result of ’same’ above may also be obtained by padding with zeros and using ’valid’:

>> x2=zeros(7,7);
>> x2(2:6,2:6)=x

x2 =

0 0 0 0 0 0 0
0 170 240 10 80 150 0
0 230 50 70 140 160 0
0 40 60 130 200 220 0
0 100 120 190 210 30 0
0 110 180 250 20 90 0
0 0 0 0 0 0 0

>> filter2(a,x2,’valid’)
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� filter2(filter,image,’full’) returns a result larger than the original; it does this by
padding with zero, and applying the filter at all places on and around the image where the
mask intersects the image matrix.

>> filter2(a,x,’full’)

ans =

18.8889 45.5556 46.6667 36.6667 26.6667 25.5556 16.6667
44.4444 76.6667 85.5556 65.5556 67.7778 58.8889 34.4444
48.8889 87.7778 111.1111 108.8889 128.8889 105.5556 58.8889
41.1111 66.6667 110.0000 130.0000 150.0000 106.6667 45.5556
27.7778 67.7778 131.1111 151.1111 148.8889 85.5556 37.7778
23.3333 56.6667 105.5556 107.7778 87.7778 38.8889 13.3333
12.2222 32.2222 60.0000 50.0000 40.0000 12.2222 10.0000

The shape parameter, being optional, can be omitted; in which case the default value is ’same’.
There is no single “best” approach; the method must be dictated by the problem at hand; by

the filter being used, and by the result required.
We can create our filters by hand, or by using the fspecial function; this has many options

which makes for easy creation of many different filters. We shall use the average option, which
produces averaging filters of given size; thus

>> fspecial(’average’,[5,7])

will return an averaging filter of size
� � (

; more simply

>> fspecial(’average’,11)

will return an averaging filter of size � � � � � . If we leave out the final number or vector, the
� � �

averaging filter is returned.
For example, suppose we apply the

�)� �
averaging filter to an image as follows:

>> c=imread(’cameraman.tif’);
>> f1=fspecial(’average’);
>> cf1=filter2(f1,c);

We now have a matrix of data type double. To display this, we can do any of the following:

� transform it to a matrix of type uint8, for use with imshow,

� divide its values by 255 to obtain a matrix with values in the
 � � – � �  range, for use with

imshow,

� use mat2gray to scale the result for display. We shall discuss the use of this function later.

Using the second method:
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>> figure,imshow(c),figure,imshow(cf1/255)

will produce the images shown in figures 3.4(a) and 3.4(b).
The averaging filter blurs the image; the edges in particular are less distinct than in the original.

The image can be further blurred by using an averaging filter of larger size. This is shown in
figure 3.4(c), where a

� � �
averaging filter has been used, and in figure 3.4(d), where a � � � � �

averaging filter has been used.

(a) Original image (b) Average filtering

(c) Using a
� � �

filter (d) Using a � � � � � filter

Figure 3.4: Average filtering

Notice how the zero padding used at the edges has resulted in a dark border appearing around
the image. This is especially noticeable when a large filter is being used. If this is an unwanted
artifact of the filtering; if for example it changes the average brightness of the image, then it may
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be more appropriate to use the ’valid’ shape option.
The resulting image after these filters may appear to be much “worse” than the original. However,

applying a blurring filter to reduce detail in an image may the perfect operation for autonomous
machine recognition, or if we are only concentrating on the “gross” aspects of the image: numbers of
objects; amount of dark and light areas. In such cases, too much detail may obscure the outcome.

Separable filters

Some filters can be implemented by the successive application of two simpler filters. For example,
since

�
�

��
� � � �
� � �
� � �

���
� � ��

��
� �
�
�

���
� ���� � � ���

the
��� �

averaging filter can be implemented by first applying a
� � � averaging filter, and then

applying a � � �
averaging filter to the result. The

� � �
averaging filter is thus separable into two

smaller filters. Separability can result in great time savings. Suppose an �
�
� filter is separable

into two filters of size �
� � and � � � . The application of an �

�
� filter requires �

�
multiplications,

and �
�

� � additions for each pixel in the image. But the application of an �
� � filter only

requires � multiplications and � � � additions. Since this must be done twice, the total number of
multiplications and additions are � � and � � � � respectively. If � is large the savings in efficiency
can be dramatic.

All averaging filters are separable; another separable filter is the laplacian��
� � � � �

� �
�

� �
� � � �

���
� �

��
� �

� �
�

���
� � � � � ��� �

Other examples will be considered below.

3.4 Frequencies; low and high pass filters

It will be convenient to have some standard terminology by which we can discuss the effects a
filter will have on an image, and to be able to choose the most appropriate filter for a given image
processing task. One important aspect of an image which enables us to do this is the notion of
frequencies. Roughly speaking, the frequencies of an image are a measure of the amount by which
grey values change with distance. This concept will be given a more formal setting in chapter 4.
High frequency components are characterized by large changes in grey values over small distances;
example of high frequency components are edges and noise. Low frequency components, on the other
hand, are parts of the image characterized by little change in the grey values. These may include
backgrounds, skin textures. We then say that a filter is a

high pass filter if it “passes over” the high frequency components, and reduces or eliminates low
frequency components,

low pass filter if it “passes over” the low frequency components, and reduces or eliminates high
frequency components,
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For example, the
�)� �

averaging filter is low pass filter, as it tends to blur edges. The filter��
� � � � �

� �
�

� �
� � � �

� �
�

is a high pass filter.
We note that the sum of the coefficients (that is, the sum of all e elements in the matrix), in the

high pass filter is zero. This means that in a low frequency part of an image, where the grey values
are similar, the result of using this filter is that the corresponding grey values in the new image will
be close to zero. To see this, consider a

� � �
block of similar values pixels, and apply the above

high pass filter to the central four:

� �  � � � � � � � � �
� � ( � � � � � � � �  
� � � � � � � � � � � �
� � � � � � � �  � � �

��� � � %

� � � �

�

The resulting values are close to zero, which is the expected result of applying a high pass filter to
a low frequency component. We shall see how to deal with negative values below.

High pass filters are of particular value in edge detection and edge enhancement (of which we
shall see more in chapter 8). But we can provide a sneak preview, using the cameraman image.

>> f=fspecial(’laplacian’)

f =

0.1667 0.6667 0.1667
0.6667 -3.3333 0.6667
0.1667 0.6667 0.1667

>> cf=filter2(f,c);
>> imshow(cf/100)
>> f1=fspecial(’log’)

f1 =

0.0448 0.0468 0.0564 0.0468 0.0448
0.0468 0.3167 0.7146 0.3167 0.0468
0.0564 0.7146 -4.9048 0.7146 0.0564
0.0468 0.3167 0.7146 0.3167 0.0468
0.0448 0.0468 0.0564 0.0468 0.0448

>> cf1=filter2(f1,c);
>> figure,imshow(cf1/100)

The images are shown in figure 3.5. Image (a) is the result of the Laplacian filter; image (b) shows
the result of the Laplacian of Gaussian (“log”) filter.

In each case, the sum of all the filter elements is zero.
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(a) Laplacian filter (b) Laplacian of Gaussian (“log”) filtering

Figure 3.5: High pass filtering

Values outside the range 0–255

We have seen that for image display, we would like the grey values of the pixels to lie between 0
and 255. However, the result of applying a linear filter may be values which lie outside this range.
We may consider ways of dealing with values outside of this “displayable” range.

Make negative values positive. This will certainly deal with negative values, but not with val-
ues greater than 255. Hence, this can only be used in specific circumstances; for example,
when there are only a few negative values, and when these values are themselves close to zero.

Clip values. We apply the following thresholding type operation to the grey values � produced by
the filter to obtain a displayable value � :

�������
��

 
if � �  

� if
 �� � � �

���

�
���

if � � �
���

This will produce an image with all pixel values in the required range, but is not suitable if
there are many grey values outside the 0–255 range; in particular, if the grey values are equally
spread over a larger range. In such a case this operation will tend to destroy the results of the
filter.

Scaling transformation. Suppose the lowest grey value produced by the filter if � � and the
highest value is ��� . We can transform all values in the range � � – �	� to the range 0–255 by
the linear transformation illustrated below:
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� � � �

255

Since the gradient of the line is � ��� � 	 � � �

� � 
 we can write the equation of the line as

��� � ���
�

�

� �
� �

�

� �

and applying this transformation to all grey levels � produced by the filter will result (after
any necessary rounding) in an image which can be displayed.

As an example, let’s apply the high pass filter given in section 3.4 to the cameraman image:

>> f2=[1 -2 1;-2 4 -2;1 -2 1];
>> cf2=filter2(f2,c);

Now the maximum and minimum values of the matrix cf2 are
� � �

and �

� � � respectively. The
mat2gray function automatically scales the matrix elements to displayable values; for any matrix

�
, it applies a linear transformation to to its elements, with the lowest value mapping to 0.0, and

the highest value mapping to 1.0. This means the output of mat2gray is always of type double.
The function also requires that the input type is double.

>> figure,imshow(mat2gray(cf2));

To do this by hand, so to speak, applying the linear transformation above, we can use:

>> maxcf2=max(cf2(:));
>> mincf2=min(cf2(:));
>> cf2g=(cf2-mincf2)/(maxcf2-mncf2);

The result will be a matrix of type double, with entries in the range
 �  – � �  . This can be be viewed

with imshow. We can make it a uint8 image by multiplying by 255 first. The result can be seen in
figure 3.6.

We can generally obtain a better result by dividing the result of the filtering by a constant before
displaying it:

>> figure,imshow(cf2/60)

and this is also shown in figure 3.6.
High pass filters are often used for edge detection. These can be seen quite clearly in the right

hand image of figure 3.6.
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Using mat2gray Dividing by a constant

Figure 3.6: Using a high pass filter and displaying the result

3.5 Edge sharpening

Spatial filtering can be used to make edges in an image slightly sharper and crisper, which gener-
ally results in an image more pleasing to the human eye. The operation is variously called “edge
enhancement”, “edge crispening”, or “unsharp masking”. This last term comes from the printing
industry.

Unsharp masking

The idea of unsharp masking is to subtract a scaled “unsharp” version of the image from the original.
In practice, we can achieve this affect by subtracting a scaled blurred image from the original. The
schema for unsharp masking is shown in figure 3.7.

Original

Blur with
low pass filter

Scale with
� � �

Subtract
Scale for
display

Figure 3.7: Schema for unsharp masking

Suppose an image x is of type uint8. The unsharp masking can be applied by the following
sequence of commands:

>> f=fspecial(’average’);
>> xf=filter2(f,x);
>> xu=double(x)-xf/1.5
>> imshow(xu/70)
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The last command scales the result so that imshow displays an appropriate image; the value may
need to be adjusted according to the input image. Suppose that x is the image shown in figure 3.8(a),
then the result of unsharp masking is given in figure 3.8(b). The result appears to be a better image
than the original; the edges are crisper and more clearly defined.

(a) Original image (b) The image after unsharp masking

Figure 3.8: An example of unsharp masking

To see why this works, we may consider the function of grey values as we travel across an edge,
as shown in figure 3.9.

As a scaled blur is subtracted from the original, the result is that the edge is enhanced, as shown
in graph (c) of figure 3.9.

We can in fact perform the filtering and subtracting operation in one command, using the
linearity of the filter, and that the

�)� �
filter��

�
   
 �  
   

���
�

is the “identity filter”.
Hence unsharp masking can be implemented by a filter of the form

� �
��
�
   
 �  
   

���
� �

�
�

��
� � � � � � � � � �
� � � � � � � � �
� � � � � � � � �

���
�

where
�
is a constant chosen to provide the best result. Alternatively, the unsharp masking filter

may be defined as

� � �

��
�
   
 �  
   

� �
� �

��
� � � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� �
�

so that we are in effect subtracting a blur from a scaled version of the original; the scaling factor
may also be split between the identity and blurring filters.



72 CHAPTER 3. NEIGHBOURHOOD PROCESSING

(a) Pixel values over an edge

(b) The edge blurred

(c) (a) �

�
(b)

Figure 3.9: Unsharp masking
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The unsharp option of fspecial produces such filters; the filter created has the form

�
� � �

��
� �

� �
� � �

�

�
� � � � � �

� �
�

� �
� � �

�

���
�

where � is an optional parameter which defaults to 0.2. If � �  � � the filter is

��
��
� � � � � � �

� � � � � �
� � � � � �

���
� � �

� �
�
   
 �  
   

���
� �

�
� �
� � � � � � � � � �
� � � � � � � � �
� � � � � � � � �

���
�

Figure 3.10 was created using the Matlab commands

>> p=imread(’pelicans.tif’);
>> u=fspecial(’unsharp’,0.5);
>> pu=filter2(u,p);
>> imshow(p),figure,imshow(pu/255)

Figure 3.10(b), appears much sharper and “cleaner” than the original. Notice in particular the rocks
and trees in the background, and the ripples on the water.

(a) The original (b) After unsharp masking

Figure 3.10: Edge enhancement with unsharp masking

Although we have used averaging filters above, we can in fact use any low pass filter for unsharp
masking.

High boost filtering

Allied to unsharp masking filters are the high boost filters, which are obtained by

high boost ��� 	 original 
 �

	 low pass 
��
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where � is an “amplification factor”. If � � � , then the high boost filter becomes an ordinary high
pass filter. If we take as the low pass filter the

��� �
averaging filter, then a high boost filter will

have the form

�
�

��
� � � � � � �

� � � � �
� � � � � �

���
�

where �
� �

. If we put �
� � � , we obtain a filtering very similar to the unsharp filter above, except

for a scaling factor. Thus the commands:

>> f=[-1 -1 -1;-1 11 -1;-1 -1 -1]/9;
>> xf=filter2(x,f);
>> imshow(xf/80)

will produce an image similar to that in figure 3.8. The value 80 was obtained by trial and error to
produce an image with similar intensity to the original.

We can also write the high boost formula above as

high boost � � 	 original 
 �

	 low pass 

� � 	 original 
 �

	 	 original 
 �

	 high pass 
 

� 	 �

� � 
 	 original 
 � 	 high pass 
��

Best results for high boost filtering are obtained if we multiply the equation by a factor
�

so that
the filter values sum to 1; this requires

� �
�

� � �
or

� � �
�

� �
�

So a general unsharp masking formula is
�

�
� �

	 original 
 �

�
�

� �
	 low pass 
��

Another version of this formula is
�

� � � �
	 original 
 �

� �

�

� � � �
	 low pass 


where for best results � is taken so that�
�
� � � �

% �

If we take � � � � � , the formula becomes
� � �

� 	 � � � 
 � �
	 original 
 �

� �

	 � � � 

� 	 � � � 
 � �

	 low pass 
 � � 	 original 
 � � 	 low pass 


If we take � � � � % we obtain
�
� 	 original 
 �

�� 	 low pass 


Using the identity and averaging filters, we can obtain high boost filters by:
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>> id=[0 0 0;0 1 0;0 0 0];
>> f=fspecial(’average’);
>> hb1=3*id-2*f

hb1 =

-0.2222 -0.2222 -0.2222
-0.2222 2.7778 -0.2222
-0.2222 -0.2222 -0.2222

>> hb2=1.25*id-0.25*f

hb2 =

-0.0278 -0.0278 -0.0278
-0.0278 1.2222 -0.0278
-0.0278 -0.0278 -0.0278

If each of the filters hb1 and hb2 are applied to an image with filter2, the result will have enhanced
edges. The images in figure 3.11 show these results; figure 3.11(a) was obtained with

>> x1=filter2(hb1,x);
>> imshow(x1/255)

and figure 3.11(b) similarly.

(a) High boost filtering with hb1 (b) High boost filtering with hb2

Figure 3.11: High boost filtering

Of the two filters, hb1 appears to produce the best result; hb2 produces an image not very much
crisper than the original.
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3.6 Non-linear filters

Linear filters, as we have seen in the previous sections, are easy to describe, and can be applied very
quickly and efficiently by Matlab.

A non-linear filter is obtained by a non-linear function of the greyscale values in the mask.
Simple examples are the maximum filter, which has as its output the maximum value under the
mask, and the corresponding minimum filter, which has as its output the minimum value under the
mask.

Both the maximum and minimum filters are examples of rank-order filters. In such a filter, the
elements under the mask are ordered, and a particular value returned as output. So if the values
are given in increasing order, the minimum filter is a rank-order filter for which the first element is
returned, and the maximum filter is a rank-order filter for which the last element is returned

For implementing a general non-linear filter in Matlab, the function to use is nlfilter, which
applies a filter to an image according to a pre-defined function. If the function is not already defined,
we have to create an m-file which defines it.

Here are some examples; first to implement a maximum filter over a
�)� �

neighbourhood:

>> cmax=nlfilter(c,[3,3],’max(x(:))’);

The nlfilter function requires three arguments: the image matrix, the size of the filter, and the
function to be applied. The function must be a matrix function which returns a scalar value. The
result of this operation is shown in figure 3.12(a).

A corresponding implementation of the minimum filter is:

>> cmin=nlfilter(c,[3,3],’min(x(:))’);

and the result is shown in figure 3.12(b).

(a) Using a maximum filter (b) Using a minimum filter

Figure 3.12: Using non-linear filters

Note that in each case the image has lost some sharpness, and has been brightened by the
maximum filter, and darkened by the minimum filter. The nlfilter function is very slow; in



3.6. NON-LINEAR FILTERS 77

general there is little call for non-linear filters except for a few which are defined by their own
commands. We shall investigate these in later chapters.

Non-linear filtering using nlfilter can be very slow. A faster alternative is to use the colfilt
function, which rearranges the image into columns first. For example, to apply the maximum filter
to the cameraman image, we can use

>> cmax=colfilt(c,[3,3],’sliding’,@max);

The parameter sliding indicates that overlapping neighbourhoods are being used (which of course
is the case with filtering). This particular operation is almost instantaneous, as compared with the
use of nlfilter.

To implement the maximum and minimum filters as rank-order filters, we may use the Matlab
function ordfilt2. This requires three inputs: the image, the index value of the ordered results to
choose as output, and the definition of the mask. So to apply the maximum filter on a

� � �
mask,

we use

>> cmax=ordfilt2(c,9,ones(3,3));

and the minimum filter can be applied with

>> cmin=ordfilt2(c,1,ones(3,3));

A very important rank-order filter is the median filter, which takes the central value of the ordered
list. We could apply the median filter with

>> cmed=ordfilt2(c,5,ones(3,3));

However, the median filter has its own command, medfilt2, which we discuss in more detail in
chapter 5.

Other non-linear filters are the geometric mean filter, which is defined as�� �
� ��� ���
	�� � 	 � � � 
�
� � ����� � � �

where
�

is the filter mask, and � � � its size; and the alpha-trimmed mean filter, which first orders
the values under the mask, trims off elements at either end of the ordered list, and takes the mean
of the remainder. So, for example, if we have a

� � �
mask, and we order the elements as

� � � � � � � � � ����� � � �
and trim off two elements at either end, the result of the filter will be

	�� � � � 
 � � � � � � � � " 
 � � �

Both of these filters have uses for image restoration; again see chapters 5 and 6.

Exercises

1. The array below represents a small greyscale image. Compute the images that result when
the image is convolved with each of the masks (a) to (h) shown. At the edge of the image use
a restricted mask. (In other words, pad the image with zeroes.)



Chapter 4

The Fourier Transform

4.1 Introduction

The Fourier Transform is of fundamental importance to image processing. It allows us to perform
tasks which would be impossible to perform any other way; its efficiency allows us to perform other
tasks more quickly. The Fourier Transform provides, among other things, a powerful alternative to
linear spatial filtering; it is more efficient to use the Fourier transform than a spatial filter for a large
filter. The Fourier Transform also allows us to isolate and process particular image “frequencies”,
and so perform low-pass and high-pass filtering with a great degree of precision.

Before we discuss the Fourier transform of images, we shall investigate the one-dimensional
Fourier transform, and a few of its properties.

4.2 Background

Our starting place is the observation that a periodic function may be written as the sum of sines
and cosines of varying amplitudes and frequencies. For example, in figure 4.1 we plot a function,
and its decomposition into sine functions.

Some functions will require only a finite number of functions in their decomposition; others will
require an infinite number. For example, a “square wave”, such as is shown in figure 4.2, has the
decomposition

� 	�� 
 ������� � � �� ����� � � � �� ����� � � � �( ����� ( � � �
�
����� � ���	����� (4.1)

In figure 4.2 we take the first four terms only to provide the approximation. The more terms of the
series we take, the closer the sum will approach the original function.

4.3 The one-dimensional discrete Fourier transform

When we deal with a discrete function, as we shall do for images, the situation from the previous
section changes slightly. Since we only have to obtain a finite number of values, we only need a
finite number of functions to do it.

Consider for example the discrete sequence

� � � � � � � � � � � � � � � � � � �
81
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� � � 	���


� ������� �

��� �
� ����� � �

��� �
� ����� � �

� 	�� 
 � ����� � � �
� ����� � ��� �

� ����� � �
Figure 4.1: A function and its trigonometric decomposition

��� � 	�� 


� 	���
 � ����� � � �
� ����� � � � �

� ����� � ��� �
" ����� ( �

Figure 4.2: A square wave and its trigonometric approximation
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Figure 4.3: Expressing a discrete function as the sum of sines
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which we may take as a discrete approximation to the square wave of figure 4.2. This can be
expressed as the sum of only two sine functions; this is shown in figure 4.3.

The Fourier transform allows us to obtain those individual sine waves which compose a given
function or sequence. Since we shall be concerned with discrete sequences, and of course images,
we shall investigate only the discrete Fourier transform, abbreviated DFT.

4.3.1 Definition of the one dimensional DFT

Suppose� � � � � � � � � � � � � � � � ��� ! � �
is a sequence of length � . We define its discrete Fourier transform to be the sequence� � � � � � � � � � � � � � � � � � ! � �
where

��� � ��
� ! �0� 2 � 	�

� �

� ��� � � ���� � � � (4.2)

The formula for the inverse DFT is very similar to the forward transform:

� � � � ! �0� 2 � 	�

� �
��� � � �� � � � � (4.3)

If you compare this equation with equation 4.2 you will see that there are really only two differences:

1. there is no scaling factor � � � ,

2. the sign inside the exponential function has been changed to positive.

The Fast Fourier Transform. One of the many aspects which make the DFT so attractive for
image processing is the existence of very fast algorithms to compute it. There are a number of
extremely fast and efficient algorithms for computing a DFT; such an algorithm is called a fast
Fourier transform, or FFT. The use of an FFT vastly reduces the time needed to compute a DFT.

One FFT method works recursively by dividing the original vector into two halves, computing
the FFT of each half, and then putting the results together. This means that the FFT is most
efficient when the vector length is a power of 2.

Table 4.1 shows that advantage gained by using the FFT algorithm as opposed to the direct
arithmetic definition of equations 4.6 and 4.7 by comparing the number of multiplications required
for each method. For a vector of length ��� , the direct method takes 	 ��� 
 � � �

� � multiplications;
the FFT only � ��� . The saving in time is thus of an order of ��� � � . Clearly the advantage of using
an FFT algorithm becomes greater as the size of the vector increases.

Because of the this computational advantage, any implementation of the DFT will use an FFT
algorithm.
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� � Direct arithmetic FFT Increase in speed
4 16 8 2.0
8 84 24 2.67
16 256 64 4.0
32 1024 160 6.4
64 4096 384 10.67
128 16384 896 18.3
256 65536 2048 32.0
512 262144 4608 56.9

1024 1048576 10240 102.4

Table 4.1: Comparison of FFT and direct arithmetic

4.4 The two-dimensional DFT

In two dimensions, the DFT takes a matrix as input, and returns another matrix, of the same size,
as output. If the original matrix values are

� 	�� � � 
 , where � and � are the indices, then the output
matrix values are � 	 ��� � 
 . We call the matrix � the Fourier transform of

�
and write� ��� 	 � 
��

Then the original matrix
�
is the inverse Fourier transform of � , and we write

� ��� ! � 	 � 
��
We have seen that a (one-dimensional) function can be written as a sum of sines and cosines. Given
that an image may be considered as a two-dimensional function

� 	�� � � 
 , it seems reasonable to
assume that

�
can be expressed as sums of “corrugation” functions which have the general form

�
� � �����
	 � � � � � 
��

A sample such function is shown in figure 4.4. And this is in fact exactly what the two-dimensional
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Figure 4.4: A “corrugation” function

Fourier transform does: it rewrites the original matrix in terms of sums of corrugations.
The definition of the two-dimensional discrete Fourier transform is very similar to that for

one dimension. The forward and inverse transforms for an
� � � matrix, where for notational
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convenience we assume that the � indices are from 0 to
�

� � and the � indices are from
 
to � � � ,

are:

� 	 � � � 
 � � ! �0� 2 �
� ! �0
�
2 �

� 	�� � � 
 	�

� �
� ��� � � � �

�
� � �� � � � (4.4)

� 	�� � � 
 � �
� � � ! �0� 2 �

� ! �0
��2 � � 	 ��� � 
 	�
 � �

��� � � � �

�
� � �� � � � (4.5)

These are horrendous looking formulas, but if we spend a bit of time pulling them apart, we shall
see that they aren’t as bad as they look.

Before we do this, we note that the formulas given in equations 4.4 and 4.5 are not used by all
authors. The main change is the position of the scaling factor � � � � . Some people put it in front of
the sums in the forward formula. Others put a factor of � ��� � � in front of both sums. The point
is the sums by themselves would produce a result (after both forward and inverse transforms) which
is too large by a factor of

� � . So somewhere in the forward-inverse formulas a corresponding
� � � � must exist; it doesn’t really matter where.

4.4.1 Some properties of the two dimensional Fourier transform

All the properties of the one-dimensional DFT transfer into two dimensions. But there are some
further properties not previously mentioned, which are of particular use for image processing.

Similarity. First notice that the forward and inverse transforms are very similar, with the excep-
tion of the scale factor � � � � in the inverse transform, and the negative sign in the exponent of the
forward transform. This means that the same algorithm, only very slightly adjusted, can be used
for both the forward an inverse transforms.

The DFT as a spatial filter. Note that the values	�
 � � � ��� � � � �

�
� � �� � �

are independent of the values
�
or � . This means that they can be calculated in advance, and only

then put into the formulas above. It also means that every value � 	 ��� � 
 is obtained by multiplying
every value of

� 	���� � 
 by a fixed value, and adding up all the results. But this is precisely what a
linear spatial filter does: it multiplies all elements under a mask with fixed values, and adds them
all up. Thus we can consider the DFT as a linear spatial filter which is as big as the image. To
deal with the problem of edges, we assume that the image is tiled in all directions, so that the mask
always has image values to use.

Separability. Notice that the Fourier transform “filter elements” can be expressed as products:	�
 � �
��� � � � �

�
� � �� � � � 	�
 � �

��� � � �

� � 	�
 � �
��� � � �� � �

The first product value	�
 � �
��� � � �

� �
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depends only on � and � , and is independent of � and � . Conversely, the second product value	�
 � �
��� � � �� �

depends only on � and � , and is independent of � and � . This means that we can break down our
formulas above to simpler formulas that work on single rows or columns:

� 	 ��
 � � ! �0� 2 � � 	���
 	�
 � �
� ��� � � �

� � � (4.6)

� 	���
 � �
�

� ! �0� 2 � � 	 � 
 	�

� �
��� � � �

� � � (4.7)

If we replace � and � with � and � we obtain the corresponding formulas for the DFT of matrix
columns. These formulas define the one-dimensional DFT of a vector, or simply the DFT.

The 2-D DFT can be calculated by using this property of “separability”; to obtain the 2-D DFT
of a matrix, we first calculate the DFT of all the rows, and then calculate the DFT of all the columns
of the result, as shown in figure 4.5. Since a product is independent of the order, we can equally
well calculate a 2-D DFT by calculating the DFT of all the columns first, then calculating the DFT
of all the rows of the result.

(a) Original image (b) DFT of each row of (a) (c) DFT of each column of (b)

Figure 4.5: Calculating a 2D DFT

Linearity An important property of the DFT is its linearity; the DFT of a sum is equal to the
sum of the individual DFT’s, and the same goes for scalar multiplication:

� 	 � ��� 
 � � 	 � 

� � 	 � 

� 	 � � 
 � � � 	 � 


where
�
is a scalar, and

�
and � are matrices. This follows directly from the definition given in

equation 4.4.
This property is of great use in dealing with image degradation such as noise which can be

modelled as a sum:
� � � � �
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where
�
is the original image; � is the noise, and

�
is the degraded image. Since

� 	 � 
 ��� 	 � 
 � � 	 � 


we may be able to remove or reduce � by modifying the transform. As we shall see, some noise
appears on the DFT in a way which makes it particularly easy to remove.

The convolution theorem. This result provides one of the most powerful advantages of using
the DFT. Suppose we wish to convolve an image

�
with a spatial filter � . Our method has been

place � over each pixel of
�

in turn, calculate the product of all corresponding grey values of
�

and elements of � , and add the results. The result is called the digital convolution of
�

and � , and
is denoted

��� � �

This method of convolution can be very slow, especially if � is large. The convolution theorem
states that the result

��� � can be obtained by the following sequence of steps:

1. Pad � with zeroes so that is the same size as
�

; denote this padded result by ��� .
2. Form the DFT’s of both

�
and � , to obtain � 	 � 
 and � 	 ��� 
 .

3. Form the element-by-element product of these two transforms:

� 	 � 
 � � 	 � � 
��

4. Take the inverse transform of the result:

� ! � 	 � 	 � 
 � � 	 � � 
 
��

Put simply, the convolution theorem states:
��� � ��� ! � 	 � 	 � 
 � � 	 � � 
 


or equivalently that
� 	 ��� � 
 ��� 	 � 
 � � 	 � � 
��

Although this might seem like an unnecessarily clumsy and roundabout way of computing something
so simple as a convolution, it can have enormous speed advantages if � is large.

For example, suppose we wish to convolve a
� � � � � � � image with a

� � � � � filter. To do this
directly would require

� �
� � �  �

�
multiplications for each pixel, of which there are

� � � � � � � �
�
%

� � ��� . Thus there will be a total of �  �
� � �

%
� � ��� � �

% � � � ��� � � � % multiplications needed. Now
look at applying the DFT (using an FFT algorithm). Each row requires 4608 multiplications by
table 4.1; there are 512 rows, so a total of

�&%  �� � � � � � � ��� � � �
%
multiplications; the same must be

done again for the columns. Thus to obtain the DFT of the image requires
� ( � ��� � � multiplications.

We need the same amount to obtain the DFT of the filter, and for the inverse DFT. We also require
� � � � � � � multiplications to perform the product of the two transforms.

Thus the total number of multiplications needed to perform convolution using the DFT is
� ( � ��� � �

� � � �
%

� � ��� � � � � � � ( � � �
 

which is an enormous saving compared to the direct method.
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The DC coefficient. The value � 	  �  
 of the DFT is called the DC coefficient. If we put
� � � �  

in the definition given in equation 4.4 then

� 	  �  
 � � ! �0� 2 �
� ! �0
�
2 �

� 	�� � � 
 	�
 � 	  
 � � ! �0� 2 �
� ! �0
�
2 �

� 	�� � � 
��

That is, this term is equal to the sum of all terms in the original matrix.

Shifting. For purposes of display, it is convenient to have the DC coefficient in the centre of the
matrix. This will happen if all elements

� 	�� � � 
 in the matrix are multiplied by 	
� � 
 � � � before the

transform. Figure 4.6 demonstrates how the matrix is shifted by this method. In each diagram the
DC coefficient is the top left hand element of submatrix � , and is shown as a black square.

� �

� �

An FFT

� �

� �

After shifting

Figure 4.6: Shifting a DFT

Conjugate symmetry An analysis of the Fourier transform definition leads to a symmetry prop-
erty; if we make the substitutions � �

�

� and ��� �

� in equation 4.4 then

� 	 ��� � 
 ����� 	
�

� � � � �
�

� � � � 


for any integers � and � . This means that half of the transform is a mirror image of the conjugate
of the other half. We can think of the top and bottom halves, or the left and right halves, being
mirror images of the conjugates of each other.

Figure 4.7 demonstrates this symmetry in a shifted DFT. As with figure 4.6, the black square
shows the position of the DC coefficient. The symmetry means that its information is given in just
half of a transform, and the other half is redundant.

Displaying transforms. Having obtained the Fourier transform � 	 ��� � 
 of an image
� 	���� � 
 ,

we would like to see what it looks like. As the elements � 	 � � � 
 are complex numbers, we can’t
view them directly, but we can view their magnitude � � 	 ��� � 
 � . Since these will be numbers of type
double, generally with large range, we have two approaches

1. find the maximum value
$

of � � 	 � � � 
 � (this will be the DC coefficient), and use imshow to
view � � 	 � � � 
 � � $ ,

2. use mat2gray to view � � 	 � � � 
 � directly.
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� � � �

� � �

� � � � � � � �

� � �

Figure 4.7: Conjugate symmetry in the DFT

One trouble is that the DC coefficient is generally very much larger than all other values. This has
the effect of showing a transform as a single white dot surrounded by black. One way of stretching
out the values is to take the logarithm of � � 	 � � � 
 � and to display

����� 	 � � � � 	 � � � 
 � 
��
The display of the magnitude of a Fourier transform is called the spectrum of the transform. We
shall see some examples later on.

4.5 Fourier transforms in Matlab

The relevant Matlab functions for us are:

� fft which takes the DFT of a vector,

� ifft which takes the inverse DFT of a vector,

� fft2 which takes the DFT of a matrix,

� ifft2 which takes the inverse DFT of a matrix,

� fftshift which shifts a transform as shown in figure 4.6.

of which we have seen the first two above.
Before attacking a few images, let’s take the Fourier transform of a few small matrices to get

more of an idea what the DFT “does”.

Example 1. Suppose we take a constant matrix
� 	�� � � 
 � � . Going back to the idea of a sum of

corrugations, then no corrugations are required to form a constant. Thus we would hope that the
DFT consists of a DC coefficient and zeroes everywhere else. We will use the ones function, which
produces an �

�
� matrix consisting of � ’s, where � is an input to the function.

>> a=ones(8);
>> fft2(a)
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The result is indeed as we expected:

ans =
64 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Note that the DC coefficient is indeed the sum of all the matrix values.

Example 2. Now we’ll take a matrix consisting of a single corrugation:

>> a = [100 200; 100 200];
>> a = repmat(a,4,4)

ans =
100 200 100 200 100 200 100 200
100 200 100 200 100 200 100 200
100 200 100 200 100 200 100 200
100 200 100 200 100 200 100 200
100 200 100 200 100 200 100 200
100 200 100 200 100 200 100 200
100 200 100 200 100 200 100 200
100 200 100 200 100 200 100 200

>> af = fft2(a)

ans =

9600 0 0 0 -3200 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

What we have here is really the sum of two matrices: a constant matrix each element of which is
� �  , and a corrugation which alternates �

�  
and

�  
from left to right. The constant matrix alone

would produce (as in example 1), a DC coefficient alone of value
% � � � �  � � %  � 

; the corrugation
a single value. By linearity, the DFT will consist of just the two values.

Example 3. We will take here a single step edge:
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>> a = [zeros(8,4) ones(8,4)]
a =

0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1

Now we shall perform the Fourier transform with a shift, to place the DC coefficient in the centre,
and since it contains some complex values, for simplicity we shall just show the rounded absolute
values:

>> af=fftshift(fft2(a));
>> round(abs(af))

ans =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 9 0 21 32 21 0 9
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

The DC coefficient is of course the sum of all values of a; the other values may be considered to be
the coefficients of the necessary sine functions required to from an edge, as given in equation 4.1.
The mirroring of values about the DC coefficient is a consequence of the symmetry of the DFT.

4.6 Fourier transforms of images

We shall create a few simple images, and see what the Fourier transform produces.

Example 1. We shall produce a simple image consisting of a single edge:

>> a=[zeros(256,128) ones(256,128)];

This is displayed on the left in figure 4.9. Now we shall take its DFT, and shift it:

>> af=fftshift(fft2(a));

Now we’ll view its spectrum; we have the choice of two commands:
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1. afl=log(1+abs(af));

imshow(afl/afl(129,129))

This works because after shifting, the DC coefficient is at position � � � � � , � � � � � . We
stretch the transform using log, and divide the result by the middle value to obtain matrix of
type double with values in the range

 �  – � �  . This can then be viewed directly with imshow.

2. imshow(mat2gray(log(1+abs(af))))

The mat2gray function automatically scales a matrix for display as an image, as we have seen
in chapter 3

It is in fact convenient to write a small function for viewing transforms. One such is shown in
figure 4.8. Then for example

function fftshow(f,type)

% Usage: FFTSHOW(F,TYPE)
%
% Displays the fft matrix F using imshow, where TYPE must be one of
% ’abs’ or ’log’. If TYPE=’abs’, then then abs(f) is displayed; if
% TYPE=’log’ then log(1+abs(f)) is displayed. If TYPE is omitted, then
% ’log’ is chosen as a default.
%
% Example:
% c=imread(’cameraman.tif’);
% cf=fftshift(fft2(c));
% fftshow(cf,’abs’)
%

if nargin<2,
type=’log’;

end

if (type==’log’)
fl = log(1+abs(f));
fm = max(fl(:));
imshow(im2uint8(fl/fm))

elseif (type==’abs’)
fa=abs(f);
fm=max(fa(:));
imshow(fa/fm)

else
error(’TYPE must be abs or log.’);

end;

Figure 4.8: A function to display a Fourier transform

>> fftshow(af,’log’)

will show the logarithm of the absolute values of the transform, and
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>> fftshow(af,’abs’)

will show the absolute values of the transform without any scaling.
The result is shown on the right in figure 4.9. We observe immediately that the result is similar

Figure 4.9: A single edge and its DFT

(although larger) to example 3 in the previous section.

Example 2. Now we’ll create a box, and then its Fourier transform:

>> a=zeros(256,256);
>> a(78:178,78:178)=1;
>> imshow(a)
>> af=fftshift(fft2(a));
>> figure,fftshow(af,’abs’)

The box is shown on the left in figure 4.10, and its Fourier transform is is shown on the right.

Example 3. Now we shall look at a box rotated
� � 7

.

>> [x,y]=meshgrid(1:256,1:256);
>> b=(x+y<329)&(x+y>182)&(x-y>-67)&(x-y<73);
>> imshow(b)
>> bf=fftshift(fft2(b));
>> figure,fftshow(bf)

The results are shown in figure 4.11. Note that the transform of the rotated box is the rotated
transform of the original box.

Example 4. We will create a small circle, and then transform it:
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Figure 4.10: A box and its DFT

Figure 4.11: A rotated box and its DFT
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>> [x,y]=meshgrid(-128:217,-128:127);
>> z=sqrt(x.^2+y.^2);
>> c=(z<15);

The result is shown on the left in figure 4.12. Now we will create its Fourier transform and display
it:

>> cf=fft2shift(fft2(z));
>> fftshow(cf,’log’)

and this is shown on the right in figure 4.12. Note the “ringing” in the Fourier transform. This is an

Figure 4.12: A circle and its DFT

artifact associated with the sharp cutoff of the circle. As we have seen from both the edge and box
images in the previous examples, an edge appears in the transform as a line of values at right angles
to the edge. We may consider the values on the line as being the coefficients of the appropriate
corrugation functions which sum to the edge. With the circle, we have lines of values radiating out
from the circle; these values appear as circles in the transform.

A circle with a gentle cutoff, so that its edge appears blurred, will have a transform with no
ringing. Such a circle can be made with the command (given z above):

b=1./(1+(z./15).^2);

This image appears as a blurred circle, and its transform is very similar—check them out!

4.7 Filtering in the frequency domain

We have seen in section 4.4 that one of the reasons for the use of the Fourier transform in image
processing is due to the convolution theorem: a spatial convolution can be performed by element-
wise multiplication of the Fourier transform by a suitable “filter matrix”. In this section we shall
explore some filtering by this method.



4.7. FILTERING IN THE FREQUENCY DOMAIN 97

4.7.1 Ideal filtering

Low pass filtering

Suppose we have a Fourier transform matrix � , shifted so that the DC coefficient is in the centre.
Since the low frequency components are towards the centre, we can perform low pass filtering by
multiplying the transform by a matrix in such a way that centre values are maintained, and values
away from the centre are either removed or minimized. One way to do this is to multiply by an
ideal low-pass matrix, which is a binary matrix

$
defined by:

$ 	���� � 
 �
�

� if 	�� � � 
 is closer to the center than some value � �
 

if 	�� � � 
 is further from the center than � �

The circle c displayed in figure 4.12 is just such a matrix, with � � � � . Then the inverse Fourier
transform of the element-wise product of � and

$
is the result we require:

� ! � 	 � � $ 
��

Let’s see what happens if we apply this filter to an image. First we obtain an image and its DFT.

>> cm=imread(’cameraman.tif’);
>> cf=fftshift(fft2(cm));
>> figure,fftshow(cf,’log’)

The cameraman image and its DFT are shown in figure 4.13. Now we can perform a low pass filter

Figure 4.13: The “cameraman” image and its DFT

by multiplying the transform matrix by the circle matrix (recall that “dot asterisk” is the Matlab
syntax for element-wise multiplication of two matrices):

>> cfl=cf.*c;
>> figure,fftshow(cfl,’log’)

and this is shown in figure 4.14(a). Now we can take the inverse transform and display the result:
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>> cfli=ifft2(cfl);
>> figure,fftshow(cfli,’abs’)

and this is shown in figure 4.14(b). Note that even though cfli is supposedly a matrix of real
numbers, we are still using fftshow to display it. This is because the fft2 and fft2 functions,
being numeric, will not produce mathematically perfect results, but rather very close numeric ap-
proximations. So using fftshow with the ’abs’ option rounds out any errors obtained during the
transform and its inverse. Note the “ringing” about the edges in this image. This is a direct result

(a) Ideal filtering on the DFT (b) After inversion

Figure 4.14: Applying ideal low pass filtering

of the sharp cutoff of the circle. The ringing as shown in figure 4.12 is transferred to the image.
We would expect that the smaller the circle, the more blurred the image, and the larger the

circle; the less blurred. Figure 4.15 demonstrates this, using cutoffs of 5 and 30. Notice that ringing
is still present, and clearly visible in figure 4.15(b).

High pass filtering

Just as we can perform low pass filtering by keeping the centre values of the DFT and eliminating
the others, so high pass filtering can be performed by the opposite: eliminating centre values and
keeping the others. This can be done with a minor modification of the preceding method of low
pass filtering. First we create the circle:

>> [x,y]=meshgrid(-128:127,-128:127);
>> z=sqrt(x.^2+y.^2);
>> c=(z>15);

and the multiply it by the DFT of the image:

>> cfh=cf.*c;
>> figure,fftshow(cfh,’log’)
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(a) Cutoff of 5 (b) Cutoff of 30

Figure 4.15: Ideal low pass filtering with different cutoffs

This is shown in figure 4.16(a). The inverse DFT can be easily produced and displayed:

>> cfhi=ifft2(cfh);
>> figure,fftshow(cfhi,’abs’)

and this is shown in figure 4.16(b). As with low pass filtering, the size of the circle influences
the information available to the inverse DFT, and hence the final result. Figure 4.17 shows some
results of ideal high pass filtering with different cutoffs. If the cutoff is large, then more information
is removed from the transform, leaving only the highest frequencies. This can be observed in
figure 4.17(c) and (d); only the edges of the image remain. If we have small cutoff, such as in
figure 4.17(a), we are only removing a small amount of the transform. We would thus expect that
only the lowest frequencies of the image would be removed. And this is indeed true, as seen in
figure 4.17(b); there is some greyscale detail in the final image, but large areas of low frequency are
close to zero.

4.7.2 Butterworth filtering

Ideal filtering simply cuts off the Fourier transform at some distance from the centre. This is very
easy to implement, as we have seen, but has the disadvantage of introducing unwanted artifacts:
ringing, into the result. One way of avoiding this is to use as a filter matrix a circle with a less
sharp cutoff. A popular choice is to use Butterworth filters.

Before we describe these filters, we shall look again at the ideal filters. As these are radially
symmetric about the centre of the transform, they can be simply described in terms of their cross
sections. That is, we can describe the filter as a function of the distance � from the centre. For an
ideal low pass filter, this function can be expressed as

� 	�� 
 �
�

� if � � � �
 

if ��� �
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(a) The DFT after high pass filtering (b) The resulting image

Figure 4.16: Applying an ideal high pass filter to an image

where � is the cutoff radius. Then the ideal high pass filters can be described similarly:

� 	�� 
 �
�

� if � � � �
 

if � � �
These functions are illustrated in figure 4.18. Butterworth filter functions are based on the following
functions for low pass filters:

� 	�� 
 � �
� � 	���� � 
 � �

and for high pass filters:

� 	�� 
 � �
� � 	 � � ��
 � �

where in each case the parameter � is called the order of the filter. The size of � dictates the
sharpness of the cutoff. These functions are illustrated in figures 4.19 and 4.20.

It is easy to implement these in Matlab; here are the commands to produce a Butterworth low
pass filter of size � �

% � � �
%
with � � � � and order � � � :

>> [x,y]=meshgrid(-128:217,-128:127));
>> bl=1./(1+((x.^2+y.^2)/15).^2);

Since a Butterworth high pass filter can be obtained by subtracting a low pass filter from 1, we can
write general Matlab functions to generate Butterworth filters of general sizes. These are shown
in figures 4.21 and 4.22.

So to apply a Butterworth low pass filter to the DFT of the cameraman image:

>> bl=lbutter(c,15,1);
>> cfbl=cf.*bl;
>> figure,fftshow(cfbl,’log’)
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(a) Cutoff of 5 (b) The resulting image

(a) Cutoff of 30 (b) The resulting image

Figure 4.17: Ideal high pass filtering with different cutoffs
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�

� 	�� 


�

�
�

� 	���


�

�

(a) Low pass (b) High pass

Figure 4.18: Ideal filter functions
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� 	�� 


�

�
�

� 	���


�

�

(a) Low pass (b) High pass

Figure 4.19: Butterworth filter functions with ��� �

�

� 	���


�

�
�

� 	�� 


�

�

(a) Low pass (b) High pass

Figure 4.20: Butterworth filter functions with �����
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function out=lbutter(im,d,n)
% LBUTTER(IM,D,N) creates a low-pass Butterworth filter
% of the same size as image IM, with cutoff D, and order N
%
% Use:
% x=imread(’cameraman.tif’);
% l=lbutter(x,25,2);
%
height=size(im,1);
width=size(im,2);
[x,y]=meshgrid(-floor(width/2):floor((width-1)/2),-floor(height/2): ...

floor((height-1)/2));
out=1./(1+(sqrt(2)-1)*((x.^2+y.^2)/d^2).^n);

Figure 4.21: A function to generate a low pass Butterworth filter

function out=hbutter(im,d,n)
% HBUTTER(IM,D,N) creates a high-pass Butterworth filter
% of the same size as image IM, with cutoff D, and order N
%
% Use:
% x=imread(’cameraman.tif’);
% l=hbutter(x,25,2);
%

out=1-lbutter(im,d,n);

Figure 4.22: A function to generate a high pass Butterworth filter
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and this is shown in figure 4.23(a). Note that there is no sharp cutoff as seen in figure 4.14; also that
the outer parts of the transform are not equal to zero, although they are dimmed considerably. Per-
forming the inverse transform and displaying it as we have done previously produces figure 4.23(b).
This is certainly a blurred image, but the ringing seen in figure 4.14 is completely absent. Compare

(a) The DFT after Butterworth low pass filtering (b) The resulting image

Figure 4.23: Butterworth low pass filtering

the transform after multiplying with a Butterworth filter (figure 4.23(a)) with the original transform
(in figure 4.13). The Butterworth filter does cause an attenuation of values away from the centre,
even if they don’t become suddenly zero, as with the ideal low pass filter in figure 4.14.

We can apply a Butterworth high pass filter similarly, first by creating the filter and applying
it to the image transform:

>> bh=hbutter(cm,15,1);
>> cfbh=cf.*bh;
>> figure,fftshow(cfbh,’log’)

and then inverting and displaying the result:

>> cfbhi=ifft2(cfbh);
>> figure,fftshow(cfbhi,’abs’)

The images are shown in figure 4.24

4.7.3 Gaussian filtering

We have met Gaussian filters in chapter 3, and we saw that they could be used for low pass
filtering. However, we can also use Gaussian filters in the frequency domain. As with ideal and
Butterworth filters, the implementation is very simple: create a Gaussian filter, multiply it by the
image transform, and invert the result. Since Gaussian filters have the very nice mathematical
property that a Fourier transform of a Gaussian is a Gaussian, we should get exactly the same
results as when using a linear Gaussian spatial filter.
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(a) The DFT after Butterworth high pass filtering (b) The resulting image

Figure 4.24: Butterworth high pass filtering

Gaussian filters may be considered to be the most “smooth” of all the filters we have discussed
so far, with ideal filters the least smooth, and Butterworth filters in the middle.

We can create Gaussian filters using the fspecial function, and apply them to our transform.

>> g1=mat2gray(fspecial(’gaussian’,256,10));
>> cg1=cf.*g1;
>> fftshow(cg1,’log’)
>> g2=mat2gray(fspecial(’gaussian’,256,30));
>> cg2=cf.*g2;
>> figure,fftshow(cg2,’log’)

Note the use of the mat2gray function. The fspecial function on its own produces a low pass
Gaussian filter with a very small maximum:

>> g=fspecial(’gaussian’,256,10);
>> format long, max(g(:)), format

ans =

0.00158757552679

The reason is that fspecial adjusts its output to keep the volume under the Gaussian function
always 1. This means that a wider function, with a large standard deviation, will have a low
maximum. So we need to scale the result so that the central value will be 1; and mat2gray does
that automatically.

The transforms are shown in figure 4.25(a) and (c). In each case, the final parameter of the
fspecial function is the standard deviation; it controls the width of the filter. Clearly, the larger the
standard deviation, the wider the function, and so the greater amount of the transform is preserved.

The results of the transform on the original image can be produced using the usual sequence of
commands:
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>> cgi1=ifft2(cg1);
>> cgi2=ifft2(cg2);
>> fftshow(cgi1,’abs’);
>> fftshow(cgi2,’abs’);

and the results are shown in figure 4.25(b) and (d)

(a) � � �  (b) Resulting image

(c) � � �  
(d) Resulting image

Figure 4.25: Applying a Gaussian low pass filter in the frequency domain

We can apply a high pass Gaussian filter easily; we create a high pass filter by subtracting a low
pass filter from 1.

>> h1=1-g1;
>> h2=1-g2;
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>> ch1=cf.*h1;
>> ch2=cf.*h2;
>> ch1i=ifft2(ch1);
>> chi1=ifft2(ch1);
>> chi2=ifft2(ch2);
>> fftshow(chi1,’abs’)
>> figure,fftshow(chi2,’abs’)

and the images are shown in figure 4.26. As with ideal and Butterworth filters, the wider the high

(a) Using � � �  (b) Using � � �  

Figure 4.26: Applying a Gaussian high pass filter in the frequency domain

pass filter, the more of the transform we are reducing, and the less of the original image will appear
in the result.

Exercises

1. By hand, compute the DFT of each of the following sequences:

(a) � � � � � � � � �
(b) � � � �

� � � �
�

� �
(c) � �

� �
�

� �
�

( �
�

% �
(d) � �

� � � �
�

( � % �
Compare your answers with those given by Matlab’s fft function.

2. For each of the transforms you computed in the previous question, compute the inverse trans-
form by hand.

3. By hand, verify the convolution theorem for each of the following pairs of sequences:

(a) � � �
� � % � � �

and � � � � � �

� � � �
(b) � � � � � % � ( �

and � � � � � �
� � �

4. Using Matlab, verify the convolution theorem for the following pairs of sequences:

(a) � � � �

� � � � % �
� � � � � � � � ( �

and � � � � � � % � � �
�

� �
�

� � � � �
�

(b) � ( � % � � � � �
�

� �
�

� �
�

% �
�

( �
and � � � � � �

� �
�

� � % � % �
�

( �
�

( �



Chapter 5

Image Restoration (1)

5.1 Introduction

Image restoration concerns the removal or reduction of degradations which have occurred during
the acquisition of the image. Such degradations may include noise, which are errors in the pixel
values, or optical effects such as out of focus blurring, or blurring due to camera motion. We
shall see that some restoration techniques can be performed very successfully using neighbourhood
operations, while others require the use of frequency domain processes. Image restoration remains
one of the most important areas of image processing, but in this chapter the emphasis will be on
the techniques for dealing with restoration, rather than with the degradations themselves, or the
properties of electronic equipment which give rise to image degradation.

A model of image degradation

In the spatial domain, we might have an image
� 	���� � 
 , and a spatial filter � 	�� � � 
 for which con-

volution with the image results in some form of degradation. For example, if � 	�� � � 
 consists of a
single line of ones, the result of the convolution will be a motion blur in the direction of the line.
Thus we may write

��	�� � � 
 � � 	���� � 
 � � 	�� � � 


for the degraded image, where the symbol
�
represents spatial filtering. However, this is not all.

We must consider noise, which can be modelled as an additive function to the convolution. Thus if
� 	�� � � 
 represents random errors which may occur, we have as our degraded image:

��	�� � � 
 � � 	���� � 
 � � 	�� � � 
 � � 	���� � 
��

We ca perform the same operations in the frequency domain, where convolution is replaced by
multiplication, and addition remains as addition, because of the linearity of the Fourier transform.
Thus

� 	 � � � 
 � � 	 � � � 
�� 	 � � � 
 � � 	 � � � 


represents a general image degradation, where of course � , � and � are the Fourier transforms of�
, � and � respectively.
If we knew the values of � and � we could recover � by writing the above equation as� 	 � � � 
 � 	 � 	 � � � 


� � 	 � � � 
 
 ��� 	 � � � 
��
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However, as we shall see, this approach may not be practical. Even though we may have some
statistical information about the noise, we will not know the value of � 	�� � � 
 or � 	 � � � 
 for all, or
even any, values. As well, dividing by � 	 � � � 
 will cause difficulties if there are values which are
close to, or equal to, zero.

5.2 Noise

We may define noise to be any degradation in the image signal, caused by external disturbance. If
an image is being sent electronically from one place to another, via satellite or wireless transmission,
or through networked cable, we may expect errors to occur in the image signal. These errors will
appear on the image output in different ways depending on the type of disturbance in the signal.
Usually we know what type of errors to expect, and hence the type of noise on the image; hence we
can choose the most appropriate method for reducing the effects. Cleaning an image corrupted by
noise is thus an important area of image restoration.

In this chapter we will investigate some of the standard noise forms, and the different methods
of eliminating or reducing their effects on the image.

We will look at four different noise types, and how they appear on an image.

Salt and pepper noise

Also called impulse noise, shot noise, or binary noise. This degradation can be caused by sharp,
sudden disturbances in the image signal; its appearance is randomly scattered white or black (or
both) pixels over the image.

To demonstrate its appearance, we will first generate a grey-scale image, starting with a colour
image:

>> tw=imread(’twins.tif’);
>> t=rgb2gray(tw);

To add noise, we use the Matlab function imnoise, which takes a number of different parameters.
To add salt and pepper noise:

>> t_sp=imnoise(t,’salt & pepper’);

The amount of noise added defaults to �  �� ; to add more or less noise we include an optional
parameter, being a value between 0 and 1 indicating the fraction of pixels to be corrupted. Thus,
for example

>> imnoise(t,’salt & pepper’,0.2);

would produce an image with �  �� of its pixels corrupted by salt and pepper noise.
The twins image is shown in figure 5.1(a) and the image with noise is shown in figure 5.1(b).

Gaussian noise

Gaussian noise is an idealized form of white noise, which is caused by random fluctuations in the
signal. We can observe white noise by watching a television which is slightly mistuned to a particular
channel. Gaussian noise is white noise which is normally distributed. If the image is represented as
�
, and the Gaussian noise by � , then we can model a noisy image by simply adding the two:

� � � �
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(a) Original image (b) With added salt & pepper noise

Figure 5.1: Noise on an image

Here we may assume that
�
is a matrix whose elements are the pixel values of our image, and �

is a matrix whose elements are normally distributed. It can be shown that this is an appropriate
model for noise. The effect can again be demonstrated by the imnoise function:

>> t_ga=inoise(t,’gaussian’);

As with salt and pepper noise, the “gaussian” parameter also can take optional values, giving the
mean and variance of the noise. The default values are

 
and

 �  � , and the result is shown in
figure 5.2(a).

Speckle noise

Whereas Gaussian noise can be modelled by random values added to an image; speckle noise (or
more simply just speckle) can be modelled by random values multiplied by pixel values, hence it is
also called multiplicative noise. Speckle noise is a major problem in some radar applications. As
above, imnoise can do speckle:

>> t_spk=imnoise(t,’speckle’);

and the result is shown in figure 5.2(b). In Matlab, speckle noise is implemented as
� 	 � � � 


where
�
is the image matrix, and � consists of normally distributed values with mean 0. An optional

parameter gives the variance of � ; its default value is
 �  � .

Although Gaussian noise and speckle noise appear superficially similar, they are formed by two
totally different methods, and, as we shall see, require different approaches for their removal.

Periodic noise

If the image signal is subject to a periodic, rather than a random disturbance, we might obtain
an image corrupted by periodic noise. The effect is of bars over the image. The function imnoise
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(a) Gaussian noise (b) Speckle noise

Figure 5.2: The twins image corrupted by Gaussian and speckle noise

does not have a periodic option, but it is quite easy to create our own, by adding a periodic matrix
(using a trigonometric function), to our image:

>> s=size(t);
>> [x,y]=meshgrid(1:s(1),1:s(2));
>> p=sin(x/3+y/5)+1;
>> t_pn=(im2double(t)+p/2)/2;

and the resulting image is shown in figure 5.3.

Figure 5.3: The twins image corrupted by peri-
odic noise

Salt and pepper noise, Gaussian noise and speckle noise can all be cleaned by using spatial
filtering techniques. Periodic noise, however, requires the use of frequency domain filtering. This is
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because whereas the other forms of noise can be modelled as local degradations, periodic noise is a
global effect.

5.3 Cleaning salt and pepper noise

Low pass filtering

Given that pixels corrupted by salt and pepper noise are high frequency components of an image,
we should expect a low-pass filter should reduce them. So we might try filtering with an average
filter:

>> a3=fspecial(’average’);
>> t_sp_a3=filter2(a3,t_sp);

and the result is shown in figure 5.4(a). Notice, however, that the noise is not so much removed as
“smeared” over the image; the result is not noticeably “better” than the noisy image. The effect is
even more pronounced if we use a larger averaging filter:

>> a7=fspecial(’average’,[7,7]);
>> t_sp_a7=filter2(a7,t_sp);

and the result is shown in figure 5.4(b).

(a)
�)� �

averaging (b)
()� (

averaging

Figure 5.4: Attempting to clean salt & pepper noise with average filtering

Median filtering

Median filtering seems almost tailor-made for removal of salt and pepper noise. Recall that the
median of a set is the middle value when they are sorted. If there are an even number of values, the
median is the mean of the middle two. A median filter is an example of a non-linear spatial filter;
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using a
� � �

mask, the output value is the median of the values in the mask. For example:
�  % � � �
% � � ���

���
% � %  ��(

���
�  � � ��( ���

60
% � % � % � � ��� ���

%  

The operation of obtaining the median means that very large or very small values—noisy values—
will end up at the top or bottom of the sorted list. Thus the median will in general replace a noisy
value with one closer to its surroundings.

In Matlab, median filtering is implemented by the medfilt2 function:

>> t_sp_m3=medfilt2(t_sp);

and the result is shown in figure 5.5. The result is a vast improvement on using averaging filters. As

Figure 5.5: Cleaning salt and pepper noise with
a median filter

with most functions, medfilt2 takes an optional parameter; in this case a 2 element vector giving
the size of the mask to be used.

If we corrupt more pixels with noise:

>> t_sp2=imnoise(t,’salt & pepper’,0.2);

then medfilt2 still does a remarkably good job, as shown in figure 5.6. To remove noise completely,
we can either try a second application of the

� � �
median filter, the result of which is shown in

figure 5.7(a) or try a
� � �

median filter on the original noisy image:

>> t_sp2_m5=medfilt2(t_sp2,[5,5]);

the result of which is shown in figure 5.7(b).

Rank-order filtering

Median filtering is a special case of a more general process called rank-order filtering. Rather than
take the median of a set, we order the set and take the � -th value, for some predetermined value of � .
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(a) 20% salt & pepper noise (b) After median fitering

Figure 5.6: Using a ����� median filter on more noise

(a) Using medfilt2 twice (b) using a
� � �

median filter

Figure 5.7: Cleaning 20% salt & pepper noise with median filtering
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Thus median filtering using a
� � �

mask is equivalent to rank-order filtering with � � �
. Similarly,

median filtering using a
� � �

mask is equivalent to rank-order filtering with � � � � . Matlab
implements rank-order filtering with the ordfilt2 function; in fact the procedure for medfilt2 is
really just a wrapper for a procedure which calls ordfilt2. There is only one reason for using
rank-order filtering instead of median filtering, and that is that it allows us to choose the median
of non-rectangular masks. For example, if we decided to use as a mask a

�)� �
cross shape:

then the median would be the third of these values when sorted. The command to do this is

>> ordfilt2(t_sp,3,[0 1 0;1 1 1;0 1 0]);

In general, the second argument of ordfilt2 gives the value of the ordered set to take, and the
third element gives the domain; the non-zero values of which specify the mask. If we wish to use a
cross with size and width 5 (so containing nine elements), we can use:

>> ordfilt2(t_sp,5,[0 0 1 0 0;0 0 1 0 0;1 1 1 1 1;0 0 1 0 0;0 0 1 0 0])

An outlier method

Applying the median filter can in general be a slow operation: each pixel requires the sorting of at
least nine values1. To overcome this difficulty, Pratt [8] has proposed the use of cleaning salt and
pepper noise by treating noisy pixels as outliers; that is, pixels whose grey values are significantly
different from those of their neighbours. This leads to the following approach for noise cleaning:

1. Choose a threshold value � .

2. For a given pixel, compare its value � with the mean
$

of the values of its eight neighbours.

3. If � � �

$ � � � , then classify the pixel as noisy, otherwise not.

4. If the pixel is noisy, replace its value with
$
; otherwise leave its value unchanged.

There is no Matlab function for doing this, but it is very easy to write one. First, we can calculate
the average of a pixel’s eight neighbours by convolving with the linear filter

��
��
� � � �
�  �
� � �

���
� �

��
�
 � � � �  � � � �  � � � �
 � � �

�   � � � �
 � � � �  � � � �  � � � �

���
�

We can then produce a matrix
�
consisting of 1’s at only those places where the difference of the

original and the filter are greater than � ; that is, where pixels are noisy. Then � �

�
will consist

of ones at only those places where pixels are not noisy. Multiplying
�
by the filter replaces noisy

values with averages; multiplying � �

�
with original values gives the rest of the output.

1In fact, this is not the case with Matlab, which uses a highly optimized method. Nonetheless, we introduce a
different method to show that there are other ways of cleaning salt and pepper noise.
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A Matlab function for implementing this is shown in figure 5.8. An immediate problem with
the outlier method is that is it not completely automatic—the threshold � must be chosen. An
appropriate way to use the outlier method is to apply it with several different thresholds, and choose
the value which provides the best results. Suppose we attempt to use the outlier method to clean

function res=outlier(im,d)
% OUTLIER(IMAGE,D) removes salt and pepper noise using an outlier method.
% This is done by using the following algorithm:
%
% For each pixel in the image, if the difference between its grey value
% and the average of its eight neighbours is greater than D, it is
% classified as noisy, and its grey value is changed to that of the
% average of its neighbours.
%
% IMAGE can be of type UINT8 or DOUBLE; the output is of type
% UINT8. The threshold value D must be chosen to be between 0 and 1.

f=[0.125 0.125 0.125; 0.125 0 0.125; 0.125 0.125 0.125];
imd=im2double(im);
imf=filter2(f,imd);
r=abs(imd-imf)-d>0;
res=im2uint8(r.*imf+(1-r).*imd);

Figure 5.8: A Matlab function for cleaning salt and pepper noise using an outlier method

the noise from figure 5.1(b); that is, the twins image with 10% salt and pepper noise. Choosing
� �  � � gives the image in figure 5.9(a). This is not as good a result as using a median filter: the
affect of the noise has been lessened, but there are still noise “artifacts” over the image. In this
case we have chosen a threshold which is too small. If we choose � �  � � , we obtain the image in
figure 5.9(b), which still has some noise artifacts, although in different places. We can see that a
lower values of � tends to remove noise from dark areas, and a higher value of � tends to remove
noise from light areas. A mid-way value, round about � �  � � does in fact produce an acceptable
result, although not quite as good as median filtering.

Clearly using an appropriate value of � is essential for cleaning salt and pepper noise by this
method. If � is too small, then too many “non-noisy” pixels will be classified as noisy, and their
values changed to the average of their neighbours. This will result in a blurring effect, similar to
that obtained by using an averaging filter. If � is chosen to be too large, then not enough noisy
pixels will be classified as noisy, and there will be little change in the output.

The outlier method is not particularly suitable for cleaning large amounts of noise; for such
situations the median filter is to be preferred. The outlier method may thus be considered as a
“quick and dirty” method for cleaning salt and pepper noise when the median filter proves too slow.

5.4 Cleaning Gaussian noise

Image averaging

It may sometimes happen that instead of just one image corrupted with Gaussian noise, we have
many different copies of it. An example is satellite imaging; if a satellite passes over the same
spot many times, we will obtain many different images of the same place. Another example is in
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(a) � �  � � (b) � �  � �

Figure 5.9: Applying the outlier method to 10% salt and pepper noise

microscopy: we might take many different images of the same object. In such a case a very simple
approach to cleaning Gaussian noise is to simply take the average—the mean—of all the images. T

To see why this works, suppose we have 100 copies of our image, each with noise; then the
�
-th

noisy image will be:
� � � �

where
�

is the matrix of original values, and � � is a matrix of normally distributed random values
with mean 0. We can find the mean

� � of these images by the usual add and divide method:

� � � �
�  � 

�����0
� 2 �

	 � � � � 

� �

�  � 
�����0
� 2 �

� � �
�  � 

�����0
� 2 �

� �
� � � �

�  � 
�����0
� 2 �

� �
Since � � is normally distributed with mean 0, it can be readily shown that the mean of all the � � ’s
will be close to zero—the greater the number of � � ’s; the closer to zero. Thus

� � � �

and the approximation is closer for larger number of images
� � � � .

We can demonstrate this with the twins image. We first need to create different versions with
Gaussian noise, and then take the average of them. We shall create 10 versions. One way is to
create an empty three-dimensional array of depth 10, and fill each “level” with a noisy image:

>> s=size(t);
>> t_ga10=zeros(s(1),s(2),10);
>> for i=1:10 t_ga10(:,:,i)=imnoise(t,’gaussian’); end
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Note here that the “gaussian” option of imnoise calls the random number generator randn, which
creates normally distributed random numbers. Each time randn is called, it creates a different
sequence of numbers. So we may be sure that all levels in our three-dimensional array do indeed
contain different images. Now we can take the average:

>> t_ga10_av=mean(t_ga10,3);

The optional parameter 3 here indicates that we are taking the mean along the third dimension of
our array. The result is shown in figure 5.10(a). This is not quite clear, but is a vast improvement
on the noisy image of figure 5.2(a). An even better result is obtained by taking the average of 100
images; this can be done by replacing 10 with 100 in the commands above, and the result is shown
in figure 5.10(b). Note that this method only works if the Gaussian noise has mean 0.

(a) 10 images (b) 100 images

Figure 5.10: Image averaging to remove Gaussian noise

Average filtering

If the Gaussian noise has mean 0, then we would expect that an average filter would average the
noise to 0. The larger the size of the filter mask, the closer to zero. Unfortunately, averaging tends
to blur an image, as we have seen in chapter 3. However, if we are prepared to trade off blurring
for noise reduction, then we can reduce noise significantly by this method.

Suppose we take the
� � �

and
� � �

averaging filters, and apply them to the noisy image t_ga.

>> a3=fspecial(’average’);
>> a5=fspecial(’average’,[5,5]);
>> tg3=filter2(a3,t_ga);
>> tg5=filter2(a5,t_ga);

The results are shown in figure 5.11. The results are not really particularly pleasing; although there
has been some noise reduction, the “smeary” nature of the resulting images is unattractive.
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(a)
� � �

averaging (b)
� � �

averaging

Figure 5.11: Using averaging filtering to remove Gaussian noise

Adaptive filtering

Adaptive filters are a class of filters which change their characteristics according to the values of
the greyscales under the mask; they may act more like median filters, or more like average filters,
depending on their position within the image. Such a filter can be used to clean Gaussian noise by
using local statistical properties of the values under the mask.

One such filter is the minimum mean-square error filter ; this is a non-linear spatial filter; and
as with all spatial filters, is implemented by applying a function to the grey values under the mask.

Since we are dealing with additive noise, our noisy image
� � can be written as

� � � � � �
where

�
is the original correct image, and � is the noise; which we assume to be normally dis-

tributed with mean 0. However, within our mask, the mean may not be zero; suppose the mean is$��
, and the variance in the mask is �

�� . Suppose also that the variance of the noise over the entire
image is known to be �

�
� . Then the output value can be calculated as

$�� � �
��

�
�� � �

�
�

	 �
�

$�� 


where � is the current value of the pixel in the noisy image. Note that if the local variance �
��

is high, then the fraction will be close to 1, and the output close to the original image value � .
This is appropriate, as high variance implies high detail such as edges, which should be preserved.
Conversely, if the local variance is low, such as in a background area of the image, the fraction is
close to zero, and the value returned is close to the mean value

$��
. See Lim [7] for details.

Another version of this filter [15] has output defined by

�
�

�
�
�

�
��
	 �

�

$�� 


and again the filter returns a value close to either � or
$��

depending on whether the local variance
is high or low.
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In practice,
$ �

can be calculated by simply taking the mean of all grey values under the mask,
and �

�� by calculating the variance of all grey values under the mask. The value �
�
� may not

necessarily be known, so a slight variant of the first filter may be used:

$�� � ��� 
��  � �
��

� ���
��� 
	�

�
�� � ���

	 �
�

$�� 


where � is the computed noise variance, and is calculated by taking the mean of all values of �
��

over the entire image. This particular filter is implemented in Matlab with the function wiener2.
The name reflects the fact that this filter attempts to minimize the square of the difference between
the input and output images; such filters are in general known as Wiener filters. However, Wiener
filters are more usually applied in the frequency domain; see section 6.3 below.

Suppose we take the noisy image shown in figure 5.2(a), and attempt to clean this image with
adaptive filtering. We will use the wiener2 function, which can take an optional parameter indi-
cating the size of the mask to be used. The default size is

� � �
. We shall create four images:

>> t1=wiener2(t_ga);
>> t2=wiener2(t_ga,[5,5]);
>> t3=wiener2(t_ga,[7,7]);
>> t4=wiener2(t_ga,[9,9]);

and these are shown in figure 5.12. Being a low pass filter, adaptive filtering does tend to blur edges
and high frequency components of the image. But it does a far better job than using a low pass
blurring filter.

We can achieve very good results for noise where the variance is not as high as that in our
current image.

>> t2=imnoise(t,’gaussian’,0,0.005);
>> imshow(t2)
>> t2w=wiener2(t2,[7,7]);
>> figure,imshow(t2w)

The image and its appearance after adaptive filtering as shown in figure 5.13. The result is a great
improvement over the original noisy image. Notice in each case that there may be some blurring of
the background, but the edges are preserved well, as predicted by our analysis of the adaptive filter
formulas above.

Exercises

1. The arrays below represent small greyscale images. Compute the
� � �

image that would
result in each case if the middle � % pixels were transformed using a

�)� �
median filter:

� � ( � �  � � � �
�  � � � � ( � �  
� � �  �  � � � �
� � � � � � �

� % ( � �  (

� % �
� � � � �  �  

� � � � � �� �  � % � %
� % �

�  � �
� � � � � �
% � �  � �  �
% � � � � �

( � � � � � � � �

� � �  � ( �  
� � � � �  � � � �

� � ( � � � � � �
� � � � � � �  ( � �
� � � � � � � � � �  
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(a)
�)� �

filtering (b)
� � �

filtering

(a)
( � (

filtering (b)
� � �

filtering

Figure 5.12: Examples of adaptive filtering to remove Gaussian noise



Chapter 6

Image Restoration (2)

6.1 Removal of periodic noise

Periodic noise may occur if the imaging equipment (the acquisition or networking hardware) is
subject to electronic disturbance of a repeating nature, such as may be caused by an electric motor.
We can easily create periodic noise by overlaying an image with a trigonometric function:

>> [x,y]=meshgrid(1:256,1:256);
>> p=1+sin(x+y/1.5);
>> tp=(double(t)/128+p)/4;

where cm is the cameraman image from previous sections. The second line simply creates a sine
function, and adjusts its output to be in the range 0–2. The last line first adjusts the cameraman
image to be in the same range; adds the sine function to it, and divides by 4 to produce a matrix of
type double with all elements in the range

 �  – � �  . This can be viewed directly with imshow, and
it is shown in figure 6.1(a). We can produce its shifted DFT and this is shown in figure 6.1(b). The

(a) (b)

Figure 6.1: The twins image (a) with periodic noise, and (b) its transform

extra two “spikes” away from the centre correspond to the noise just added. In general the tighter
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the period of the noise, the further from the centre the two spikes will be. This is because a small
period corresponds to a high frequency (large change over a small distance), and is therefore further
away from the centre of the shifted transform.

We will now remove these extra spikes, and invert the result. If we put pixval on and move
around the image, we find that the spikes have row, column values of 	 � � % � � (  
 and 	 �  � � ��� 
 . These
have the same distance from the centre:

� � �  � � � . We can check this by

>> z=sqrt((x-129).^2+(y-129).^2);
>> z(156,170)
>> z(102,88)

There are two methods we can use to eliminate the spikes, we shall look at both of them.

Band reject filtering. We create a filter consisting of ones with a ring of zeroes; the zeroes lying
at a radius of 49 from the centre:

>> br=(z < 47 | z > 51);

where z is the matrix consisting of distances from the origin. This particular ring will have a
thickness large enough to cover the spikes. Then as before, we multiply this by the transform:

>> tbr=tf.*br;

and this is shown in figure 6.2(a). The result is that the spikes have been blocked out by this filter.
Taking the inverse transform produces the image shown in figure 6.2(b). Note that not all the noise

(a) A band-reject filter (b) After inversion

Figure 6.2: Removing periodic noise with a band-reject filter

has gone, but a significant amount has, especially in the centre of the image.

Notch filtering. With a notch filter, we simply make the rows and columns of the spikes zero:
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>> tf(156,:)=0;
>> tf(102,:)=0;
>> tf(:,170)=0;
>> tf(:,88)=0;

and the result is shown in figure 6.3(a). The image after inversion is shown in figure 6.3(b). As

(a) A notch filter (b) After inversion

Figure 6.3: Removing periodic noise with a notch filter

before, much of the noise in the centre has been removed. Making more rows and columns of the
transform zero would result in a larger reduction of noise.

6.2 Inverse filtering

We have seen that we can perform filtering in the Fourier domain by multiplying the DFT of an
image by the DFT of a filter: this is a direct use of the convolution theorem. We thus have

� 	 � � � 
 ��� 	 � � � 
 � 	 � � � 


where � is the DFT of the image; � is the DFT of the filter, and
�

is the DFT of the result. If we
are given

�
and � , then we should be able to recover the (DFT of the) original image � simply by

dividing by � :
� 	 � � � 
 � � 	 � � � 
� 	 � � � 
 � (6.1)

Suppose, for example we take the wombats image wombats.tif, and blur it using a low-pass But-
terworth filter:

>> w=imread(’wombats.tif’);
>> wf=fftshift(fft2(w));
>> b=lbutter(w,15,2);
>> wb=wf.*b;
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>> wba=abs(ifft2(wb));
>> wba=uint8(255*mat2gray(wba));
>> imshow(wba)

The result is shown on the left in figure 6.4. We can attempt to recover the original image by
dividing by the filter:

>> w1=fftshift(fft2(wba))./b;
>> w1a=abs(ifft2(w1));
>> imshow(mat2gray(w1a))

and the result is shown on the right in figure 6.4. This is no improvement! The trouble is that some

Figure 6.4: An attempt at inverse filtering

elements of the Butterworth matrix are very small, so dividing produces very large values which
dominate the output. We can deal with this problem in two ways:

1. Apply a low pass filter
�
to the division:

� 	 � � � 
 � � 	 � � � 
� 	 � � � 
 � 	 � � � 
��

This should eliminate very low (or zero) values.

2. “Constrained division”: choose a threshold value
�
, and if � � 	 � � � 
 � � �

, we don’t perform a
division, but just keep our original value. Thus:

� 	 � � � 
 � ����
���

� 	 � � � 
� 	 � � � 
 if � � 	 � � � 
 � � �
,

� 	 � � � 
 if � � 	 � � � 
 � � �
.

We can apply the first method by multiplying a Butterworth low pass filter to the matrix c1 above:
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>> wbf=fftshift(fft2(wba));
>> w1=(wbf./b).*lbutter(w,40,10);
>> w1a=abs(ifft2(w1));
>> imshow(mat2gray(w1a))

Figure 6.5 shows the results obtained by using a different cutoff radius of the Butterworth filter each
time: (a) uses 40 (as in the Matlab commands just given); (b) uses 60; (c) uses 80, and (d) uses
100. It seems that using a low pass filter with a cutoff round about 60 will yield the best results.

(a) (b)

(c) (d)

Figure 6.5: Inverse filtering using low pass filtering to eliminate zeros

After we use larger cutoffs, the result degenerates.
We can try the second method; to implement it we simply make all values of the filter which

are too small equal to 1:

>> d=0.01;
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>> b=lbutter(w,15,2);b(find(b<d))=1;
>> w1=fftshift(fft2(wba))./b;
>> w1a=abs(ifft2(w1));
>> imshow(mat2gray(w1a))

Figure 6.6 shows the results obtained by using a different cutoff radius of the Butterworth filter
each time: (a) uses

� �  �  � (as in the Matlab commands just given); (b) uses
� �  �  � �� ; (c) uses

� �  �  � � , and (d) uses
� �  �  � � . It seems that using a threshold

�
in the range

 �  � � � � �  �  � ��

(a) (b)

(c) (d)

Figure 6.6: Inverse filtering using constrained division

produces reasonable results.

Motion deblurring

We can consider the removal of blur caused by motion to be a special case of inverse filtering.
Suppose we take an image and blur it by a small amount.
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>> bc=imread(’board.tif’);
>> bg=im2uint8(rgb2gray(bc));
>> b=bg(100:355,50:305);
>> imshow(b)

These commands simply take the colour image of a circuit board (the image board.tif), makes
a greyscale version of data type uint8, and picks out a square subimage. The result is shown as
figure 6.7(a). To blur it, we can use the blur parameter of the fspecial function.

>> m=fspecial(’motion’,7,0);
>> bm=imfilter(b,m);
>> imshow(bm)

and the result is shown as figure 6.7(b). The result of the blur has effectively obliterated the text

(a) (b)

Figure 6.7: The result of motion blur

on the image.
To deblur the image, we need to divide its transform by the transform corresponding to the blur

filter. This means that we first must create a matrix corresponding to the transform of the blur:

>> m2=zeros(256,256);
>> m2(1,1:7)=m;
>> mf=fft2(m2);

Now we can attempt to divide by this transform.

>> bmi=ifft2(fft2(bm)./mf);
>> fftshow(bmi,’abs’)

and the result is shown in figure 6.8(a). As with inverse filtering, the result is not particularly good,
because the values close to zero in the matrix mf have tended to dominate the result. As above, we
can constrain the division by only dividing by values which are above a certain threshold.

>> d=0.02;
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>> mf=fft2(m2);mf(find(abs(mf)<d))=1;
>> bmi=ifft2(fft2(bm)./mf);
>> imshow(mat2gray(abs(bmi))*2)

where the last multiplication by 2 just brightens the result, which is shown in figure 6.8(b). The

(a) Straight division (b) Constrained division

Figure 6.8: Attempts at removing motion blur

writing, especially in the centre of the image, is now quite legible.

6.3 Wiener filtering

As we have seen from the previous section, inverse filtering does not necessarily produce particularly
pleasing results. The situation is even worse if the original image has been corrupted by noise. Here
we would have an image � filtered with a filter � and corrupted by noise � . If the noise is additive
(for example, Gaussian noise), then the linearity of the Fourier transform gives us

� 	 � � � 
 ��� 	 � � � 
 � 	 � � � 
 � � 	 � � � 


and so

� 	 � � � 
 � � 	 � � � 

� � 	 � � � 
� 	 � � � 


as we have seen in the introduction to this chapter. So not only do we have the problem of dividing
by the filter, we have the problem of dealing with noise. In such a situation the presence of noise can
have a catastrophic effect on the inverse filtering: the noise can completely dominate the output,
making direct inverse filtering impossible.

To introduce Wiener filtering, we shall discuss a more general question: given a degraded image
� � of some original image

�
and a restored version

�
, what measure can we use to say whether our

restoration has done a good job? Clearly we would like
�

to be as close as possible to the “correct”
image

�
. One way of measuring the closeness of

�
to

�
is by adding the squares of all differences:

0 	 $ ��� � �

�
��� � 
 �
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where the sum is taken over all pixels of
�

and
�

(which we assume to be of the same size). This
sum can be taken as a measure of the closeness of

�
to

�
. If we can minimize this value, we may be

sure that our procedure has done as good a job as possible. Filters which operate on this principle
of least squares are called Wiener filters. We can obtain � by

� 	 � � � 
 �

�
�� 	 � � � 
 � � 	 � � � 
 � �� � 	 � � � 
 � � ����� � 	 � � � 
 (6.2)

where � is a constant [4]. This constant can be used to approximate the amount of noise: if
the variance �

�
of the noise is known, then � � � �

�
can be used. Otherwise, � can be chosen

interactively (in other words, by trial and error) to yield the best result. Note that if � �  
, then

equation 6.2 reduces to equation 6.1.
We can easily implement equation 6.2:

>> K=0.01;
>> wbf=fftshift(fft2(wba));
>> w1=wbf.*(abs(b).^2./(abs(b).^2+K)./b); % This is the equation
>> w1a=abs(ifft2(w1));
>> imshow(mat2gray(w1a))

The result is shown in figure 6.9(a). Images (b), (c) and (d) in this figure show the results with� �  �  � � , � �  �  � � � and � �  �  � � � � respectively. Thus as � becomes very small, noise starts
to dominate the image.

Exercises

1. Add the sine waves to the engineer face using the same commands as for the cameraman:

>> [x,y]=meshgrid(1:256,1:256);
>> s=1+sin(x+y/1.5);
>> ep=(double(en)/128+s)/4;

Now attempt to remove the noise using band-reject filtering or notch filtering. Which one
gives the best result?

2. For each of the following sine commands:

(a) s=1+sin(x/3+y/5);

(b) s=1+sin(x/5+y/1.5);

(c) s=1+sin(x/6+y/6);

add the sine wave to the image as shown in the previous question, and attempt to remove the
resulting periodic noise using band-reject filtering or notch filtering.

Which of the three is easiest to “clean up”?

3. Apply a
� � �

blurring filter to the cameraman image with imfilter. Attempt to deblur the
result using inverse filtering with constrained division. Which threshold gives the best results?

4. Repeat the previous question using a
()� (

blurring filter.
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(a) (b)

(c) (d)

Figure 6.9: Wiener filtering



Chapter 7

Image Segmentation (1)

7.1 Introduction

Segmentation refers to the operation of partitioning an image into component parts, or into separate
objects. In this chapter, we shall investigate two very important topics: thresholding, and edge
detection.

7.2 Thresholding

7.2.1 Single thresholding

A greyscale image is turned into a binary (black and white) image by first choosing a grey level
�

in the original image, and then turning every pixel black or white according to whether its grey
value is greater than or less than

�
:

A pixel becomes

�
white if its grey level is � � ,
black if its grey level is

���
.

Thresholding is a vital part of image segmentation, where we wish to isolate objects from the
background. It is also an important component of robot vision.

Thresholding can be done very simply in Matlab. Suppose we have an 8 bit image, stored as
the variable X. Then the command

X>T

will perform the thresholding. We can view the result with imshow. For example, the commands

>> r=imread(’rice.tif’);
>> imshow(r),figure,imshow(r>110)

will produce the images shown in figure 7.1. The resulting image can then be further processed to
find the number, or average size of the grains.

To see how this works, recall that in Matlab, an operation on a single number, when applied to
a matrix, is interpreted as being applied simultaneously to all elements of the matrix. The command
X>T will thus return 1 (for true) for all those pixels for which the grey values are greater than T,
and 0 (for false) for all those pixels for which the grey values are less than or equal to T. We thus
end up with a matrix of 0’s and 1’s, which can be viewed as a binary image.
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Figure 7.1: Thresholded image of rice grains

The rice image shown above has light grains on a dark background; an image with dark objects
over a light background may be treated the same::

>> b=imread(’bacteria.tif’);
>> imshow(b),figure,imshow(b>100)

will produce the images shown in figure 7.2.

Figure 7.2: Thresholded image of bacteria

As well as the above method, Matlab has the im2bw function, which thresholds an image of
any data type, using the general syntax

im2bw(image,level)

where level is a value between 0 and 1 (inclusive), indicating the fraction of grey values to be
turned white. This command will work on greyscale, coloured and indexed images of data type
uint8, uint16 or double. For example, the thresholded rice and bacteria images above could be
obtained using
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>> im2bw(r,0.43);
>> im2bw(b,0.39);

The im2bw function automatically scales the value level to a grey value appropriate to the image
type, and then performs a thresholding by our first method.

As well as isolating objects from the background, thresholding provides a very simple way of
showing hidden aspects of an image. For example, the image paper.tif appears all white, as nearly
all the grey values are very high. However, thresholding at a high level produces an image of far
greater interest. We can use the commands

>> p=imread(’paper1.tif’);
>> imshow(p),figure,imshow(p>241)

to provide the images shown in figure 7.3.

Figure 7.3: The paper image and result after thresholding

7.2.2 Double thresholding

Here we choose two values
� � and

� � and apply a thresholding operation as:

A pixel becomes

�
white if its grey level is between

� � and
� � ,

black if its grey level is otherwise.

We can implement this by a simple variation on the above method:

X>T1 & X<T2

Since the ampersand acts as a logical “and”, the result will only produce a one where both inequalities
are satisfied. Consider the following sequence of commands, which start by producing an 8-bit grey
version of the indexed image spine.tif:

>> [x,map]=imread(’spine.tif’);
>> s=uint8(256*ind2gray(x,map));
>> imshow(s),figure,imshow(s>115 & s<125)
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Figure 7.4: The image spine.tif an the result after double thresholding

The output is shown in figure 7.4. Note how double thresholding brings out subtle features of the
spine which single thresholding would be unable to do. We can obtain similar results using im2bw:

imshow(im2bw(x,map,0.45)&~{}im2bw(x,map,0.5))}

but this is somewhat slower because of all the extra computation involved when dealing with an
indexed image.

7.3 Applications of thresholding

We have seen that thresholding can be useful in the following situations:

1. When we want to remove unnecessary detail from an image, to concentrate on essentials.
Examples of this were given in the rice and bacteria images: by removing all grey level
information, the rice and bacteria were reduced to binary blobs. But this information may be
all we need to investigate sizes, shapes, or numbers of blobs.

2. To bring out hidden detail. This was illustrated with paper and spine images. In both, the
detail was obscured because of the similarity of the grey levels involved.

But thresholding can be vital for other purposes. We list a few more:

3. When we want to remove a varying background from text or a drawing. We can simulate a
varying background by taking the image text.tif and placing it on a random background.
This can be easily implemented with some simple Matlab commands:

>> r=rand(256)*128+127;
>> t=imread(’text.tif’);
>> tr=uint8(r.*double(not(t));
>> imshow(tr)

The first command simply uses the rand function (which produces matrices of uniformly
generated random numbers between

 �  and � �  ), and scales the result so the random numbers
are between 127 and 255. We then read in the text image, which shows white text on a dark
background.
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The third command does several things at once: not(t) reverses the text image so as to have
black text on a white background; double changes the numeric type so that the matrix can be
used with arithmetic operations; finally the result is multiplied into the random matrix, and
the whole thing converted to uint8 for display. The result is shown on the left in figure 7.5.

If we threshold this image and display the result with

>> imshow(tr>100)

the result is shown on the right in figure 7.5, and the background has been completely removed.

Figure 7.5: Text on a varying background, and thresholding

7.4 Adaptive thresholding

Sometimes it is not possible to obtain a single threshold value which will isolate an object completely.
This may happen if both the object and its background vary. For example, suppose we take the
circles image and adjust it so that both the circles and the background vary in brightness across
the image.

>> c=imread(’circles.tif’);
>> x=ones(256,1)*[1:256];
>> c2=double(c).*(x/2+50)+(1-double(c)).*x/2;
>> c3=uint8(255*mat2gray(c2));

Figure 7.6 shows an attempt at thresholding, using graythresh.

>> t=graythresh(c3)

t =

0.4196
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>> ct=im2bw(c3,t);

As you see, the result is not particularly good; not all of the object has been isolated from its
background. Even if different thresholds are used, the results are similar. Figure 7.7 illustrates the

(a) Circles image: c3 (b) Thresholding attempt: ct

Figure 7.6: An attempt at thresholding

reason why a single threshold cannot work. In this figure the image is being shown as a function;
the threshold is shown on the right as a horizontal plane. It can be seen that no position of the

(a) The image as a function (b) Thresholding attempt

Figure 7.7: An attempt at thresholding—functional version

plane can cut off the circles from the background.
What can be done in a situation like this is to cut the image into small pieces, and apply

thresholding to each piece individually. Since in this particular example the brightness changes
from left to right, we shall cut up the image into four pieces:

>> p1=c3(:,1:64);
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>> p2=c3(:,65:128);
>> p3=c3(:,129:192);
>> p4=c3(:,193:256);

Figure 7.8(a) shows how the image is sliced up. Now we can threshold each piece:

>> g1=im2bw(p1,graythresh(p1));
>> g2=im2bw(p2,graythresh(p2));
>> g3=im2bw(p3,graythresh(p3));
>> g4=im2bw(p4,graythresh(p4));

and now display them as a single image:

>> imshow([g1 g2 g3 g4])

and the result is shown in figure 7.8(b). The above commands can be done much more simply by

(a) Cutting up the image (b) Thresholding each part separately

Figure 7.8: Adaptive thresholding

using the command blkproc, which applies a particular function to each block of the image. We
can define our function with

>> fun=inline(’im2bw(x,graythresh(x))’);

Notice that this is the same as the commands used above to create g1, g2, g3 and g4 above, except
that now x is used to represent a general input variable.

The function can then be applied it to the image t3 with

>> t4=blkproc(t3,[256,64],fun);

What this command means is that we apply our function fun to each distinct � �
% � % �

block of our
image.
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Image Segmentation (2)

8.1 Edge detection

Edges contain some of the most useful information in an image. We may use edges to measure
the size of objects in an image; to isolate particular objects from their background; to recognize or
classify objects. There are a large number of edge-finding algorithms in existence, and we shall look
at some of the more straightforward of them. The general Matlab command for finding edges is

edge(image,’method’,parameters. . . )

where the parameters available depend on the method used. In this chapter, we shall show how to
create edge images using basic filtering methods, and discuss the Matlab edge function.

An edge may be loosely defined as a local discontinuity in the pixel values which exceeds a
given threshold. More informally, an edge is an observable difference in pixel values. For example,
consider the two

�
blocks of pixels shown in figure 8.1.

51 52 53 59
54 52 53 62
50 52 53 68
55 52 53 55

50 53 155 160
51 53 160 170
52 53 167 190
51 53 162 155

Figure 8.1: Blocks of pixels

In the right hand block, there is a clear difference between the grey values in the second and third
columns, and for these values the differences exceed 100. This would be easily discernible in an
image—the human eye can pick out grey differences of this magnitude with relative ease. Our aim
is to develop methods which will enable us to pick out the edges of an image.

8.2 Derivatives and edges

8.2.1 Fundamental definitions

Consider the image in figure 8.2, and suppose we plot the gray values as we traverse the image from
left to right. Two types of edges are illustrated here: a ramp edge, where the grey values change
slowly, and a step edge, or an ideal edge, where the grey values change suddenly.

145
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0

100

255

Figure 8.2: Edges and their profiles

Suppose the function which provides the profile in figure 8.2 is
� 	�� 
 ; then its derivative

� � 	�� 

can be plotted; this is shown in figure 8.3. The derivative, as expected, returns zero for all constant

0

Figure 8.3: The derivative of the edge profile

sections of the profile, and is non zero (in this example) only in those parts of the image in which
difference occur.

Many edge finding operators are based on differentiation; to apply the continuous derivative to
a discrete image, first recall the definition of the derivative:

� �
� � � � � �

��� �

� 	�� � � 
 �

� 	�� 

�

�

Since in an image, the smallest possible value of � is 1, being the difference between the index values
of two adjacent pixels, a discrete version of the derivative expression is

� 	�� � � 
 �

� 	�� 
��
Other expressions for the derivative are

� � �
��� �

� 	���

�

� 	��
� � 


�
� � � �

��� �

� 	�� � � 
 �

� 	��
� � 


���
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with discrete counterparts
� 	�� 


�

� 	��
� � 
 � 	 � 	�� � � 
 �

� 	��
� � 
 
 � � �

For an image, with two dimensions, we use partial derivatives; an important expression is the
gradient, which is the vector defined by��� �� � � �� � �
which for a function

� 	���� � 
 points in the direction of its greatest increase. The direction of that
increase is given by

� � � ! � � � � � � �� � � � � �
and its magnitude by� � � �� � � � � � � �� � � � �
Most edge detection methods are concerned with finding the magnitude of the gradient, and then
applying a threshold to the result.

8.2.2 Some edge detection filters

Using the expression
� 	�� � � 
 �

� 	��
� � 
 for the derivative, leaving the scaling factor out, produces

horizontal and vertical filters:

� � �  � � and

��
� � � 

�

� �
�

These filters will find vertical and horizontal edges in an image and produce a reasonably bright
result. However, the edges in the result can be a bit “jerky”; this can be overcome by smoothing the
result in the opposite direction; by using the filters��

� �
�
�

���
� and � � � � �

Both filters can be applied at once, using the combined filter:

� � � ��
� � �  �

� �  �
� �  �

���
�

This filter, and its companion for finding horizontal edges:

� � �
��
� � � � � � �   

� � �

���
�

are the Prewitt filters for edge detection.
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If � � and � � are the grey values produced by applying
� � and � � to an image, then the magnitude

of the gradient is obtained with
�
� �� � � �� �

In practice, however, its is more convenient to use either of
��� 
	� � � � � � � � � � �

or � � � � � � � � � �
For example, let us take the image of the integrated circuit shown in figure 8.4, which can be

read into Matlab with

>> ic=imread(’ic.tif’);

Figure 8.4: An integrated circuit

Applying each of
� � and

� � individually provides the results shown in figure 8.5 Figure 8.5(a) was
produced with the following Matlab commands:

>> px=[-1 0 1;-1 0 1;-1 0 1];
>> icx=filter2(px,ic);
>> figure,imshow(icx/255)

and figure 8.5(b) with

>> py=px’;
>> icy=filter2(py,ic);
>> figure,imshow(icy/255)

Note that the filter
� � highlights vertical edges, and

� � horizontal edges. We can create a figure
containing all the edges with:
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(a) (b)

Figure 8.5: The circuit after filtering with the Prewitt filters

>> edge_p=sqrt(icx.^2+icy.^2);
>> figure,imshow(edge_p/255)

and the result is shown in figure 8.6(a). This is a grey-scale image; a binary image containing edges
only can be produced by thresholding. Figure 8.6(b) shows the result after the command

>> edge_t=im2bw(edge_p/255,0.3);

We can obtain edges by the Prewitt filters directly by using the command

>> edge_p=edge(ic,’prewitt’);

and the edge function takes care of all the filtering, and of choosing a suitable threshold level; see its
help text for more information. The result is shown in figure 8.7. Note that figures 8.6(b) and 8.7
seem different to each other. This is because the edge function does some extra processing over and
above taking the square root of the sum of the squares of the filters.

Slightly different edge finding filters are the Roberts cross-gradient filters:��
� �   
 

� �  
   

� �
� and

��
�

 �  

� �   
   

� �
�

and the Sobel filters:��
� � �  �

� �  �
� �  �

���
� and

��
� � � � � �   

� � �

���
� �

The Sobel filters are similar to the Prewitt filters, in that they apply a smoothing filter in the
opposite direction to the central difference filter. In the Sobel filters, the smoothing takes the form

� � � ���
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(a) (b)

Figure 8.6: All the edges of the circuit

Figure 8.7: The prewitt option of edge
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which gives slightly more prominence to the central pixel. Figure 8.8 shows the respective results
of the Matlab commands

>> edge_r=edge(ic,’roberts’);
>> figure,imshow(edge_r)

and

>> edge_s=edge(ic,’sobel’);
>> figure,imshow(edge_s)

(a) Roberts edge detection (b) Sobel edge detection

Figure 8.8: Results of the Roberts and Sobel filters

The appearance of each of these can be changed by specifying a threshold level.
Of the three filters, the Sobel filters are probably the best; they provide good edges, and they

perform reasonably well in the presence of noise.

8.3 Second derivatives

8.3.1 The Laplacian

Another class of edge-detection method is obtained by considering the second derivatives.
The sum of second derivatives in both directions is called the laplacian; it is written as

� � � � � � �� � � �
� � �� � � �

and it can be implemented by the filter��
�
 �  

� �

� � �  

���
� �
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This is known as a discrete Laplacian. The laplacian has the advantage over first derivative methods
in that it is an isotropic filter [11]; this means it is invariant under rotation. That is, if the laplacian
is applied to an image, and the image then rotated, the same result would be obtained if the image
were rotated first,. and the laplacian applied second. This would appear to make this class of filters
ideal for edge detection. However, a major problem with all second derivative filters is that they
are very sensitive to noise.

To see how the second derivative affects an edge, take the derivative of the pixel values as plotted
in figure 8.2; the results are shown schematically in figure 8.9.

The edge First derivative Second derivative Absolute values

Figure 8.9: Second derivatives of an edge function

The Laplacian (after taking an absolute value, or squaring) gives double edges. To see an example,
suppose we enter the Matlab commands:

>> l=fspecial(’laplacian’,0);
>> ic_l=filter2(l,ic);
>> figure,imshow(mat2gray(ic_l))

the result of which is shown in figure 8.10.
Although the result is adequate, it is very messy when compared to the results of the Prewitt and
Sobel methods discussed earlier. Other Laplacian masks can be used; some are:��

� � � �
� �

� �
� � �

���
� and

��
� � � � � �

� � �
� � � � �

���
� �

In Matlab, Laplacians of all sorts can be generated using the fspecial function, in the form

fspecial(’laplacian’,ALPHA)

which produces the Laplacian

�
� � �

��
�
� � �

� �

� �

�
�

� � �

�

� � �

� �

���
� �

If the parameter ALPHA (which is optional) is omitted, it is assumed to be
 � � . The value

 
gives

the Laplacian developed earlier.
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Figure 8.10: Result after filtering with a discrete laplacian

8.3.2 Zero crossings

A more appropriate use for the Laplacian is to find the position of edges by locating zero crossings.
From figure 8.9, the position of the edge is given by the place where the value of the filter takes on
a zero value. In general, these are places where the result of the filter changes sign. For example,
consider the the simple image given in figure 8.11(a), and the result after filtering with a Laplacian
mask in figure 8.11(b).

���������������������������������������

���������������������������������������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

���������������

���������������

� ��� � ��� � ��� � ��� � ��� � ���

� ��� � ��� � ��� � ��� � ��� � ���

� ��� � ��� � ��� � ��� � ��� � ���

� ��� � ��� � ��� � ��� � ��� � ���

� ��� � ��� � ��� � ���

� ��� � ��� � ��� � ���

� � ��� � � ���

� � ��� � � ���

� ���

� ���

� ���

� ���

� ���

� ���

� ���

� ���

� ���

� ���

� ���

� ���

� ���

� ���

� ���

� ���

� ��� � ���

� ��� � ���

� ��� � ���

� ��� � ���

� ��� � ���

� ��� � ���

� ��� � ���

� ��� � ���

� ���

� ���

� ���

� ���

� ���

� ���

� ���

� ���

� ���

� ���

� ��� � ��� � ��� � ���

� ��� � ��� � ��� � ��� � ��� � ���

� � ��� ��� ��� ��� ��� � � ���

��� ���

��� ���

��� ���

��� ���

� �

� �

��� ��� ��� ���

��� ���

��� ���

��� ��� � � ������ ��� ��� ���

� � ���

��� ���� ���

� ���

��� ���

� ���

�

�

�

�

�

�

� �

� �

� �

� �

�

�

�

�

(a) A simple image (b) After laplace filtering

Figure 8.11: Locating zero crossings in an image

We define the zero crossings in such a filtered image to be pixels which satisfy either of the
following:

1. they have a negative grey value and are next to (by four-adjacency) a pixel whose grey value
is positive,
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2. they have a value of zero, and are between negative and positive valued pixels.

To give an indication of the way zero-crossings work, look at the edge plots and their second
differences in figure 8.12.

�����������

�����������

A “step” edge

�����������

�

���������

A “ramp” edge

�������

�

�

�������

Its second differences

�������

�

�

�

�����

Its second differences

Figure 8.12: Edges and second differences

In each case the zero-crossing is circled. The important point is to note that across any edge
there can be only one zero-crossing. Thus an image formed from zero-crossings has the potential
to be very neat.

In figure 8.11(b) the zero crossings are shaded. We now have a further method of edge detection:
take the zero-crossings after a laplace filtering. This is implemented in Matlab with the zerocross
option of edge, which takes the zero crossings after filtering with a given filter:

>> l=fspecial(’laplace’,0);
>> icz=edge(ic,’zerocross’,l);
>> imshow(icz)

The result is shown in figure 8.13(a). This is not in fact a very good result—far too many grey level
changes have been interpreted as edges by this method. To eliminate them, we may first smooth
the image with a Gaussian filter. This leads to the following sequence of steps for edge detection;
the Marr-Hildreth method:

1. smooth the image with a Gaussian filter,

2. convolve the result with a laplacian,

3. find the zero crossings.
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This method was designed to provide a edge detection method to be as close as possible to biological
vision. The first two steps can be combined into one, to produce a “Laplacian of Gaussian” or “LoG”
filter. These filters can be created with the fspecial function. If no extra parameters are provided
to the zerocross edge option, then the filter is chosen to be the LoG filter found by

>> fspecial(’log’,13,2)

This means that the following command:

>> edge(ic,’log’);

produces exactly the same result as the commands:

>> log=fspecial(’log’,13,2);
>> edge(ic,’zerocross’,log);

In fact the LoG and zerocross options implement the same edge finding method; the difference
being that the zerocross option allows you to specify your own filter. The result after applying an
LoG filter and finding its zero crossings is given in figure 8.13(b).

(a) Zeros crossings (b) Using an LoG filter first

Figure 8.13: Edge detection using zero crossings

8.4 The Hough transform

If the edge points found by the above edge detection methods are sparse, the resulting edge image
may consist of individual points, rather than straight lines or curves. Thus in order to establish a
boundary between the regions, it might be necessary to fit a line to those points. This can be a time
consuming and computationally inefficient process, especially if there are many such edge points.
One way of finding such boundary lines is by use of the “Hough transform”.
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The Hough transform1 is designed to find lines in images, but it can be easily varied to find
other shapes. The idea is simple. Suppose 	�� � � 
 is a point in the image (which we shall assume to
be binary). We can write � � � � � � , and consider all pairs 	 � � � 
 which satisfy this equation, and
plot them into an “accumulator array”. The 	 � � � 
 array is the “transform array”.

For example, take 	�� � � 
 � 	 � � � 
 . Since the equation relating � and � is

� � � � � � �

we can write

� �
�

� � � �

Thus the line � �
�

� � � consists of all pairs of points relating to the single point 	 � � � 
 . This is
shown in figure 8.14.

�

�

	 � � � 
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� Image

��

�

�

�

�

Transform

Figure 8.14: A point in an image and its corresponding line in the transform

Each point in the image is mapped onto a line in the transform. The points in the transform
corresponding to the greatest number of intersections correspond to the strongest line in the image.

For example, suppose we consider an image with five points: 	 � �  
 , 	 � � � 
 , 	 � � � 
 , 	 � � � 
 and 	 � � � 
 .
Each of these points corresponds to a line as follows:

	 � �  
 �
� �

�

�

	 � � � 
 �
� �

�

� � �	 � � � 
 �
� �

� � � � �	 � � � 
 �
� �

�

� � � �	 � � � 
 �
� �

�

� � � � �

Each of these lines appears in the transform as shown in figure 8.15.
The dots in the transform indicate places where there are maximum intersections of lines: at

each dot three lines intersect. The coordinates of these dots are 	 � � � 
 � 	 � �  
 and 	 � � � 
 � 	 � � � � 
 .
These values correspond to the lines

��� � � ���  

and

��� � � ��� 	
� � 


or � � � and � ���
� � . These lines are shown on the image in figure 8.16.

1“Hough” is pronounced “Huff”.
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Figure 8.15: An image and its corresponding lines in the transform
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Figure 8.16: Lines found by the Hough transform
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These are indeed the “strongest” lines in the image in that they contain the greatest number of
points.

There is a problem with this implementation of the Hough transform, and that is that it can’t
find vertical lines: we can’t express a vertical line in the form � � $ � � � , as $ represents the
gradient, and a vertical line has infinite gradient. We need another parameterization of lines.

Consider a general line, as shown in figure 8.17. Clearly any line can be described in terms of

��

�

�

�

�

Figure 8.17: A line and its parameters

the two parameters
�
and

�
:
�
is the perpendicular distance from the line to the origin, and

�
is the

angle of the line’s perpendicular to the � -axis. In this parameterization, vertical lines are simply
those which have

� �  
. If we allow

�
to have negative values, we can restrict

�
to the range

�

�  �� � � �  �

Given this parameterization, we need to be able to find the equation of the line. First note that
the point 	 � � � 
 where the perpendicular to the line meets the line is 	 � � � 
 � 	 ��� � � � � � ����� � 
 . Also
note that the gradient of the perpendicular is � � � � � ����� � � � � � � . Now let 	�� � � 
 be any point on
then line. The gradient of the line is

rise
run

� �
�

�

�
�

�

� �
�

� ����� �
�

�

��� � � � �

But since the gradient of the line’s perpendicular is � � � � , the gradient of the line itself must be

�

�� � � � �
�

� � � �
����� � �

Putting these two expressions for the gradient together produces:

�
�

� ����� �
�

�

��� � � � �
�

� � � �
����� � �

If we now multiply out these fractions we obtain:

� ����� �
�

� ����� � � �
�

� � � � � � ��� � � � �
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and this equation can be rewritten as

� ����� � � � � � � � � � ����� � � � ��� � � � �
� � 	 ����� � � � � � � � � 

� � �

We finally have the required equation for the line as:
� � � � � � � ����� � � � �

The Hough transform can then be implemented as follows: we start by choosing a discrete set of
values of

�
and

�
to use. For each pixel 	���� � 
 in the image, we compute

� � � � � � � ����� �

for each value of
�
, and place the result in the appropriate position in the 	 � � � 
 array. At the end,

the values of 	 � � � 
 with the highest values in the array will correspond to strongest lines in the
image.

An example will clarify this: consider the image shown in figure 8.18.
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�
Figure 8.18: A small image

We shall discretize
�
to use only the values

�

� � 7 �  7 � � � 7 � �  7 �

We can start by making a table containing all values � � � � � � � ����� � for each point, and for each
value of

�
:

	�� � � 

�

� � 7� "7 � � 7 �  "7
	 � �  
 � � � � � � �  

	 � � � 
  � � � � �	 � � � 
  � ( � � � � �	 � � � 
 � � � � � � � � �
	 � � � 
 �

 � ( � � � � �
	 � � � 
  � ( � � � � �
	 � � � 


�

 � ( � � � � �
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The accumulator array contains the number of times each value of 	 � � � 
 appears in the above table:

� � � � �

 � (   � ( � � � � � � � � � � � � � � � � � � �
�

� � 7 � � � � � 7 � � � �� � 7 � � � � �
�  7 � � � �

In practice this array will be very large, and can be displayed as an image. In this example the two
equal largest values occur at 	 � � � 
 � 	 � �  7 
 and 	 � � � 
 � 	 � � �  �7 
 . The lines then are

� � � �  � � �����  � �

or � � � , and
� � � � �  � � ����� �  � �

or � � �
. These lines are shown in figure 8.19

0 1 2 3 4
0

1

2

3

4

�

�
Figure 8.19: Lines found by the Hough transform

Exercises

1. Enter the following matrix into Matlab:

201 195 203 203 199 200 204 190 198 203
201 204 209 197 210 202 205 195 202 199
205 198 46 60 53 37 50 51 194 205
208 203 54 50 51 50 55 48 193 194
200 193 50 56 42 53 55 49 196 211
200 198 203 49 51 60 51 205 207 198
205 196 202 53 52 34 46 202 199 193
199 202 194 47 51 55 48 191 190 197
194 206 198 212 195 196 204 204 199 200
201 189 203 200 191 196 207 203 193 204
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Mathematical morphology (1)

9.1 Introduction

Morphology, or morphology for short, is a branch of image processing which is particularly useful for
analyzing shapes in images. We shall develop basic morphological tools for investigation of binary
images, and then show how to extend these tools to greyscale images. Matlab has many tools
for binary morphology in the image processing toolbox; most of which can be used for greyscale
morphology as well.

9.2 Basic ideas

The theory of mathematical morphology can be developed in many different ways. We shall adopt
one standard method which uses operations on sets of points. A very solid and detailed account
can be found in Haralick and Shapiro [5].

Translation

Suppose that � is a set of pixels in a binary image, and
� � 	�� � � 
 is a particular coordinate point.

Then ��� is the set � “translated” in direction 	���� � 
 . That is
� � � � 	 � � � 

� 	�� � � 
�� 	 � � � 
�� � � �

For example, in figure 9.1, � is the cross shaped set, and
� � 	 � � � 
 . The set � has been shifted in

the � and � directions by the values given in
�
. Note that here we are using matrix coordinates,

rather than Cartesian coordinates, so that the origin is at the top left, � goes down and � goes
across.

Reflection

If � is set of pixels, then its reflection, denoted
�
� , is obtained by reflecting � in the origin:

�
� � � 	

�

� �
�

� 
�� 	�� � � 
�� � � �

For examples, in figure 9.2, the open and closed circles form sets which are reflections of each other.
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Figure 9.2: Reflection
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9.3 Dilation and erosion

These are the basic operations of morphology, in the sense that all other operations are built from
a combination of these two.

9.3.1 Dilation

Suppose � and
�

are sets of pixels. Then the dilation of � by
�
, denoted ��� �

, is defined as

��� � ���� 	�� � � �
What this means is that for every point � � �

, we translate � by those coordinates. Then we take
the union of all these translations.

An equivalent definition is that

��� � � � 	���� � 
 � 	 � � � 
�� 	�� � � 
�� � � 	 � � � 
 � � � �

From this last definition, dilation is shown to be commutative; that

��� � � � � � �

An example of a dilation is given in figure 9.3. In the translation diagrams, the grey squares show
the original position of the object. Note that � � � � � � is of course just � itself. In this example, we
have

� � � 	  �  
 � 	 � � � 
 � 	 � � � � 
 � 	 � � � � 
 � 	 � � � � � 
 �
and those these are the coordinates by which we translate � .

In general, ��� �
can be obtained by replacing every point 	���� � 
 in � with a copy of

�
, placing

the 	  �  
 point of
�

at 	�� � � 
 . Equivalently, we can replace every point 	 � � � 
 of �
with a copy of

� .
Dilation is also known as Minkowski addition; see Haralick and Shapiro [5] for more information.
As you see in figure 9.3, dilation has the effect of increasing the size of an object. However, it is

not necessarily true that the original object � will lie within its dilation ��� �
. Depending on the

coordinates of
�
, ��� �

may end up quite a long way from � . Figure 9.4 gives an example of this:
� is the same as in figure 9.3;

�
has the same shape but a different position. In this figure, we have

� � � 	 ( � � 
 � 	 % � � 
 � 	 % � � 
 � 	 � � � 
 � 	 � � � 
 �
so that

��� � ��� � " � � �	� � � � � � �
� � � � � 
 ��� � � � � � ��� � � � � 
 � �
For dilation, we generally assume that � is the image being processed, and

�
is a small set of pixels.

In this case
�

is referred to as a structuring element or as a kernel.
Dilation in Matlab is performed with the command

>> imdilate(image,kernel)

To see an example of dilation, consider the commands:
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Figure 9.3: Dilation
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Figure 9.4: A dilation for which ���� �����

>> t=imread(’text.tif’);
>> sq=ones(3,3);
>> td=imdilate(t,sq);
>> subplot(1,2,1),imshow(t)
>> subplot(1,2,2),imshow(td)

The result is shown in figure 9.5. Notice how the image has been “thickened”. This is really what
dilation does; hence its name.

9.3.2 Erosion

Given sets � and
�
, the erosion of � by

�
, written �	� �

, is defined as:
�
� � � � � � � ��� � � �

In other words the erosion of � by
�

consists of all points
� � 	�� � � 
 for which

� � is in � . To
perform an erosion, we can move

�
over � , and find all the places it will fit, and for each such place

mark down the corresponding 	  �  
 point of �
. The set of all such points will form the erosion.

An example of erosion is given in figures 9.6.
Note that in the example, the erosion �
� �

was a subset of � . This is not necessarily the case;
it depends on the position of the origin in

�
. If

�
contains the origin (as it did in figure 9.6), then

the erosion will be a subset of the original object.
Figure 9.7 shows an example where

�
does not contain the origin. In this figure, the open circles

in the right hand figure form the erosion.
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Figure 9.5: Dilation of a binary image

Note that in figure 9.7, the shape of the erosion is the same as that in figure 9.6; however its
position is different. Since the origin of

�
in figure 9.7 is translated by 	

�

� �
�

� 
 from its position
in figure 9.6, we can assume that the erosion will be translated by the same amount. And if we
compare figures 9.6 and 9.7, we can see that the second erosion has indeed been shifted by 	

�

� �
�

� 

from the first.

For erosion, as for dilation, we generally assume that � is the image being processed, and
�

is
a small set of pixels: the structuring element or kernel.

Erosion is related to Minkowski subtraction: the Minkowski subtraction of
�

from � is defined
as

�
�

� ���
� 	�� � � �

Erosion in Matlab is performed with the command

>> imerode(image,kernel)

We shall give an example; using a different binary image:

>> c=imread(’circbw.tif’);
>> ce=imerode(c,sq);
>> subplot(1,2,1),imshow(c)
>> subplot(1,2,2),imshow(ce)

The result is shown in figure 9.8. Notice how the image has been “thinned”. This is the expected
result of an erosion; hence its name. If we kept on eroding the image, we would end up with a
completely black result.

Relationship between erosion and dilation

It can be shown that erosion and dilation are “inverses” of each other; more precisely, the complement
of an erosion is equal to the dilation of the complement. Thus:

�
� � � ��� �� �
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Figure 9.6: Erosion with a cross-shaped structuring element
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Figure 9.7: Erosion with a structuring element not containing the origin

Figure 9.8: Erosion of a binary image
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A proof of this can be found in Haralick and Shapiro [5].
It can be similarly shown that the same relationship holds if erosion and dilation are inter-

changed; that
��� � � �
� �� �

We can demonstrate the truth of these using Matlab commands; all we need to know is that the
complement of a binary image

b

is obtained using

>> ~b

and that given two images a and b; their equality is determined with

>> all(a(:)==b(:))

To demonstrate the equality
�
� � � ��� �� �

pick a binary image, say the text image, and a structuring element. Then the left hand side of this
equation is produced with

>> lhs=~imerode(t,sq);

and the right hand side with

>> rhs=imdilate(~t,sq);

Finally, the command

>> all(lhs(:)==rhs(:))

should return 1, for true.

9.3.3 An application: boundary detection

If � is an image, and
�

a small structuring element consisting of point symmetrically places about
the origin, then we can define the boundary of � by any of the following methods:

(i) � �

	 �	� � 
 “ internal boundary”
(ii) 	 ��� � 


�

� “external boundary”
(iii) 	 ��� � 


�

	 �
� � 
 “morphological gradient”

In each definition the minus refers to set difference. For some examples, see figure 9.9. Note that the
internal boundary consists of those pixels in � which are at its edge; the external boundary consists
of pixels outside � which are just next to it, and that the morphological gradient is a combination
of both the internal and external boundaries.

To see some examples, choose the image rice.tif, and threshold it to obtain a binary image:

>> rice=imread(’rice.tif’);
>> r=rice>110;
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Figure 9.9: Boundaries
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Then the internal boundary is obtained with:

>> re=imerode(r,sq);
>> r_int=r&~re;
>> subplot(1,2,1),imshow(r)
>> subplot(1,2,2),imshow(r_int)

The result is shown in figure 9.10.

Figure 9.10: “Internal boundary” of a binary image

The external boundary and morphological gradients can be obtained similarly:

>> rd=imdilate(r,sq);
>> r_ext=rd&~r;
>> r_grad=rd&~re;
>> subplot(1,2,1),imshow(r_ext)
>> subplot(1,2,2),imshow(r_grad)

The results are shown in figure 9.11.
Note that the external boundaries are larger than the internal boundaries. This is because the

internal boundaries show the outer edge of the image components; whereas the external boundaries
show the pixels just outside the components. The morphological gradient is thicker than either, and
is in fact the union of both.

Exercises

1. For each of the following images � and structuring elements
�
:

� �

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0
0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0
0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0
0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0



Chapter 10

Mathematical morphology (2)

10.1 Opening and closing

These operations may be considered as “second level” operations; in that they build on the basic
operations of dilation and erosion. They are also, as we shall see, better behaved mathematically.

10.1.1 Opening

Given � and a structuring element
�
, the opening of � by

�
, denoted � �

�
, is defined as:

� � � � 	 �
� � 
 � � �

So an opening consists of an erosion followed by a dilation. An equivalent definition is

� � � � � � � � � � � � � � �

That is, � �
�

is the union of all translations of
�

which fit inside � . Note the difference with
erosion: the erosion consists only of the 	  �  
 point of

�
for those translations which fit inside � ;

the opening consists of all of
�
. An example of opening is given in figure 10.1.
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Figure 10.1: Opening

The opening operation satisfies the following properties:

1. 	 � � � 
 � � . Note that this is not the case with erosion; as we have seen, an erosion may not
necessarily be a subset.
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2. 	 � � � 
 � � � � � �
. That is, an opening can never be done more than once. This property

is called idempotence. Again, this is not the case with erosion; you can keep on applying a
sequence of erosions to an image until nothing is left.

3. If � � � , then 	 ��� � 
 � 	 � � � 
 .
4. Opening tends to “smooth” an image, to break narrow joins, and to remove thin protrusions.

10.1.2 Closing

Analogous to opening we can define closing, which may be considered as a dilation followed by an
erosion, and is denoted � �

�
:

� �
� � 	 ��� � 
 � � �

Another definition of closing is that � � � �
�

if all translations
� � which contain � have non-empty

intersections with � . An example of closing is given in figure 10.2. The closing operation satisfies
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Figure 10.2: Closing

the following properties:

1. � � 	 � �
� 
 .

2. 	 � �
� 
 �

� ��� �
�
; that is, closing, like opening, is idempotent.

3. If � � � , then 	 � �
� 
 � 	 � �

� 
 .
4. Closing tends also to smooth an image, but it fuses narrow breaks and thin gulfs, and eliminates

small holes.

Opening and closing are implemented by the imopen and imclose functions respectively. We can
see the effects on a simple image using the square and cross structuring elements.

>> cr=[0 1 0;1 1 1;0 1 0];
>> >> test=zeros(10,10);test(2:6,2:4)=1;test(3:5,6:9)=1;test(8:9,4:8)=1;test(4,5)=1

test =
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0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 1 1 1 1 0
0 1 1 1 1 1 1 1 1 0
0 1 1 1 0 1 1 1 1 0
0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0

>> imopen(test,sq)

ans =

0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 1 1 1 1 0
0 1 1 1 0 1 1 1 1 0
0 1 1 1 0 1 1 1 1 0
0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

>> imopen(test,cr)

ans =

0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 1 1 0 1 1 1 0 0
0 1 1 1 1 1 1 1 1 0
0 1 1 1 0 1 1 1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Note that in each case the image has been separated into distinct components, and the lower part
has been removed completely.

>> imclose(test,sq)

ans =
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1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 0 0

>> imclose(test,cr)

ans =

0 0 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 0 1 1 1 0 0 0

With closing, the image is now fully “joined up”. We can obtain a joining-up effect with the text
image, using a diagonal structuring element.

>> diag=[0 0 1;0 1 0;1 0 0]

diag =

0 0 1
0 1 0
1 0 0

>> tc=imclose(t,diag);
>> imshow(tc)

The result is shown in figure 10.3.

An application: noise removal

Suppose � is a binary image corrupted by impulse noise—some of the black pixels are white, and
some of the white pixels are back. An example is given in figure 10.4. Then � � �

will remove the
single black pixels, but will enlarge the holes. We can fill the holes by dilating twice:

	 	 �
� � 
 � � 
 � � �
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Figure 10.3: An example of closing

The first dilation returns the holes to their original size; the second dilation removes them. But this
will enlarge the objects in the image. To reduce them to their correct size, perform a final erosion:

	 	 	 � � � 
 � � 
 � � 
 � � �

The inner two operations constitute an opening; the outer two operations a closing. Thus this noise
removal method is in fact an opening followed by a closing:

	 � � � 
 �
� 
��

This is called morphological filtering.
Suppose we take an image and apply �  �� shot noise to it:

>> c=imread(’circles.tif’);
>> x=rand(size(c));
>> d1=find(x<=0.05);
>> d2=find(x>=0.95);
>> c(d1)=0;
>> c(d2)=1;
>> imshow(c)

The result is shown as figure 10.4(a). The filtering process can be implemented with

>> cf1=imclose(imopen(c,sq),sq);
>> figure,imshow(cf1)
>> cf2=imclose(imopen(c,cr),cr);
>> figure,imshow(cf2)

and the results are shown as figures 10.4(b) and (c). The results are rather “blocky”; although less
so with the cross structuring element.
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(a) (b) (c)

Figure 10.4: A noisy binary image and results after morphological filtering with different structuring elements.

Relationship between opening and closing

Opening and closing share a relationship very similar to that of erosion and dilation: the complement
of an opening is equal to the closing of a complement, and complement of an closing is equal to the
opening of a complement. Specifically:

� �
� � ��� ��

and

� � � � � �

�� �

Again see Haralick and Shapiro [5] for a formal proof.

10.2 The hit-or-miss transform

This is a powerful method for finding shapes in images. As with all other morphological algorithms,
it can be defined entirely in terms of dilation and erosion; in this case, erosion only.

Suppose we wish to locate
� � �

square shapes, such as is in the centre of the image � in
figure 10.5.

Figure 10.5: An image � containing a shape to be found

If we performed an erosion � � �
with

�
being the square structuring element, we would obtain

the result given in figure 10.6.
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Figure 10.6: The erosion � � �

The result contains two pixels, as there are exactly two places in � where
�

will fit. Now suppose
we also erode the complement of � with a structuring element � which fits exactly around the

� � �
square; � and � are shown in figure 10.7. (We assume that 	  �  
 is at the centre of � .)

� : � :

Figure 10.7: The complement and the second structuring element

If we now perform the erosion � � � we would obtain the result shown in figure 10.8.

Figure 10.8: The erosion � ���

The intersection of the two erosion operations would produce just one pixel at the position of
the centre of the

� � �
square in � , which is just what we want. If � had contained more than one

square, the final result would have been single pixels at the positions of the centres of each. This
combination of erosions forms the hit-or-miss transform.

In general, if we are looking for a particular shape in an image, we design two structuring
elements:

� � which is the same shape, and
� � which fits around the shape. We then write

� �
	 � � � � � 
 and

��� � � � 	 �
� � � 
�� 	 �
� � � 


for the hit-or-miss transform.
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As an example, we shall attempt to find the hyphen in “Cross-Correlation” in the text image
shown in figure 9.5. This is in fact a line of pixels of length six. We thus can create our two
structuring elements as:

>> b1=ones(1,6);
>> b2=[1 1 1 1 1 1 1 1;1 0 0 0 0 0 0 1; 1 1 1 1 1 1 1 1];
>> tb1=erode(t,b1);
>> tb2=erode(~t,b2);
>> hit_or_miss=tb1&tb2;
>> [x,y]=find(hit_or_miss==1)

and this returns a coordinate of 	 � � � ( % 
 , which is right in the middle of the hyphen. Note that the
command

>> tb1=erode(t,b1);

is not sufficient, as there are quite a few lines of length six in this image. We can see this by viewing
the image tb1, which is given in figure 10.9.

Figure 10.9: Text eroded by a hyphen-shaped structuring element

10.3 Some morphological algorithms

In this section we shall investigate some simple algorithms which use some of the morphological
techniques we have discussed in previous sections.

10.3.1 Region filling

Suppose in an image we have a region bounded by an
�
-connected boundary, as shown in figure 10.10.

Given a pixel � within the region, we wish to fill up the entire region. To do this, we start with
� , and dilate as many times as necessary with the cross-shaped structuring element

�
(as used in
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Figure 10.10: An � -connected boundary of a region to be filled

figure 9.6), each time taking an intersection with � before continuing. We thus create a sequence
of sets:

� � � ��� � � � � � � � � � � � � ��� ����� � �

for which

� � � 	 � � ! � � � 
 � � �

Finally ��� � � is the filled region. Figure 10.11 shows how this is done.

� :

�
�

� �

�
� �

�
��

�%

Figure 10.11: The process of filling a region

In the right hand grid, we have

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Note that the use of the cross-shaped structuring element means that we never cross the boundary.
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10.3.2 Connected components

We use a very similar algorithm to fill a connected component; we use the cross-shaped structuring
element for

�
-connected components, and the square structuring element for

�
-connected compo-

nents. Starting with a pixel � , we fill up the rest of the component by creating a sequence of
sets

� � � � � � � � � � � � � � � �

such that

� � � 	 � � ! � � � 
 � �

until ��� � ��� ! � . Figure 10.12 shows an example.

�

�
� �

�

�

�

�

�

Using the cross

�

�
�
�

�
�
�

�

�
� �

���

� � �

�

�

�

Using the square

Figure 10.12: Filling connected components

In each case we are starting in the centre of the square in the lower left. As this square is itself a�
-connected component, the cross structuring element cannot go beyond it.

Both of these algorithms can be very easily implemented by Matlab functions. To implement
region filling, we keep track of two images: current and previous, and stop when there is no
difference between them. We start with previous being the single point � in the region, and
current the dilation 	 � � � 
 � � . At the next step we set

���������	�	
�� � 
�
���������� �

�
������	��� � 	�
�
���������� � � 
 � � �

Given
�
, we can implement the last step in Matlab by

imdilate(current,B)&~A.

The function is shown in figure 10.13 We can use this to fill a particular region delineated by a
boundary.

>> n=imread(’nicework.tif’);
>> imshow(n),pixval on
>> nb=n&~imerode(n,sq);
>> figure,imshow(nb)
>> nf=regfill(nb,[74,52],sq);
>> figure,imshow(nf)
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function out=regfill(im,pos,kernel)
% REGFILL(IM,POS,KERNEL) performs region filling of binary image IMAGE,
% with kernel KERNEL, starting at point with coordinates given by POS.
%
% Example:
% n=imread(’nicework.tif’);
% nb=n&~imerode(n,ones(3,3));
% nr=regfill(nb,[74,52],ones(3,3));
%
current=zeros(size(im));
last=zeros(size(im));
last(pos(1),pos(2))=1;
current=imdilate(last,kernel)&~im;
while any(current(:)~=last(:)),
last=current;
current=imdilate(last,kernel)&~im;

end;
out=current;

Figure 10.13: A simple program for filling regions

The results are shown in figure 10.14. Image (a) is the original; (b) the boundary, and (c) the result
of a region fill. Figure (d) shows a variation on the region filling, we just include all boundaries.
This was obtained with

>> figure,imshow(nf|nb)

(a) (b) (c) (d)

Figure 10.14: Region filling

The function for connected components is almost exactly the same as that for region filling, except
that whereas for region filling we took an intersection with the complement of our image, for
connected components we take the intersection with the image itself. Thus we need only change
one line, and the resulting function is shown in 10.15 We can experiment with this function with
the “nice work” image. We shall use the square structuring element, and also a larger structuring
element of size � � � � � .

>> sq2=ones(11,11);
>> nc=components(n,[57,97],sq);
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function out=components(im,pos,kernel)
% COMPONENTS(IM,POS,KERNEL) produces the connected component of binary image
% IMAGE which nicludes the point with coordinates given by POS, using
% kernel KERNEL.
%
% Example:
% n=imread(’nicework.tif’);
% nc=components(nb,[74,52],ones(3,3));
%
current=zeros(size(im));
last=zeros(size(im));
last(pos(1),pos(2))=1;
current=imdilate(last,kernel)&im;
while any(current(:)~=last(:)),
last=current;
current=imdilate(last,kernel)&im;

end;
out=current;

Figure 10.15: A simple program for connected components

>> imshow(nc)
>> nc2=components(n,[57,97],sq2);
>> figure,imshow(nc2)

and the results are shown in figure 10.16. Image (a) uses the
� � �

square; image (b) uses the � � � � �
square.

(a) (b)

Figure 10.16: Connected components

10.3.3 Skeletonization

Recall that the skeleton of an object can be defined by the “medial axis transform”; we may imagine
fires burning in along all edges of the object. The places where the lines of fire meet form the
skeleton. The skeleton may be produced by morphological methods.
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Consider the table of operations as shown in table 10.1.

Erosions Openings Set differences
� ��� � �

�

	 ��� � 

�	� � 	 �
� � 
 � � 	 � � � 


�

	 	 �	� � 
 � � 

�
� �

� 	 �	� �
� 
 � � 	 �	� �

� 

�

	 	 �	� �
� 
 � � 


�
� � � 	 �	� � � 
 � � 	 �	� � � 

�

	 	 �	� � � 
 � � 

...

...
...

� � � � 	 �	� � � 
 � � 	 �	� � � 

�

	 	 �	� � � 
 � � 


Table 10.1: Operations used to construct the skeleton

Here we use the convention that a sequence of
�
erosions using the same structuring element

�
is denoted � � � �

. We continue the table until 	 � � � � 
 � �
is empty. The skeleton is then

obtained by taking the unions of all the set differences. An example is given in figure 10.17, using
the cross structuring element.

Since 	 ��� �
� 
 � �

is empty, we stop here. The skeleton is the union of all the sets in the third
column; it is shown in figure 10.18. This method of skeletonization is called Lantuéjoul’s method ;
for details see Serra [12].

This algorithm again can be implemented very easily; a function to do so is shown in figure 10.19.
We shall experiment with the nice work image.

>> nk=imskel(n,sq);
>> imshow(nk)
>> nk2=imskel(n,cr);
>> figure,imshow(nk2)

The result is shown in figure 10.20. Image (a) is the result using the square structuring element;
Image (b) is the result using the cross structuring element.

Exercises

1. Read in the image circlesm.tif.

(a) Erode with squares of increasing size until the image starts to split into disconnected
components.

(b) Using pixval on, find the coordinates of a pixel in one of the components.

(c) Use the components function to isolate that particular component.

2. (a) With your disconnected image from the previous question, compute its boundary.

(b) Again with pixval on, find a pixel inside one of the boundaries.

(c) Use the regfill function to fill that region.

(d) Display the image as a boundary with one of the regions filled in.
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� ��� � �
�

	 � � � 


�
� � 	 �
� � 
 � � 	 �
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�

	 	 �
� � 
 � � 


�	� �
� 	 �
� �
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 � � 	 �
� �
� 


�

	 	 �
� �
� 
 � � 


Figure 10.17: Skeletonization

Figure 10.18: The final skeleton
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function skel = imskel(image,str)
% IMSKEL(IMAGE,STR) - Calculates the skeleton of binary image IMAGE using
% structuring element STR. This function uses Lantejoul’s algorithm.
%
skel=zeros(size(image));
e=image;
while (any(e(:))),

o=imopen(e,str);
skel=skel | (e&~o);
e=imerode(e,str);

end

Figure 10.19: A simple program for computing skeletons

(a) (b)

Figure 10.20: Skeletonization of a binary image
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3. Using the
� � �

square structuring element, compute the skeletons of

(a) a
(
square,

(b) a
�)� �

rectangle,

(c) an L shaped figure formed from an
� � �

square with a
� � �

square taken from a corner,

(d) an H shaped figure formed from a � � � � � square with
� � �

squares taken from the
centres of the top and bottom,

(e) a cross formed from an � � � � � square with
�)� �

squares taken from each corner.

In each case check your answer with Matlab

4. Repeat the above question but use the cross structuring element.

5. For the images listed in question 4, obtain their skeletons by both the bwmorph function, and
by using the function given in figure 10.19. Which seems to provide the best result?

6. Use the hit-or-miss transform with appropriate structuring elements to find the dot on the
“ i ” in the word “ in ” in the image text.tif.



Chapter 11

Colour processing

For human beings, colour provides one of the most important descriptors of the world around
us. The human visual system is particularly attuned to two things: edges, and colour. We have
mentioned that the human visual system is not particularly good at recognizing subtle changes in
grey values. In this section we shall investigate colour briefly, and then some methods of processing
colour images

11.1 What is colour?

Colour study consists of

1. the physical properties of light which give rise to colour,

2. the nature of the human eye and the ways in which it detects colour,

3. the nature of the human vision centre in the brain, and the ways in which messages from the
eye are perceived as colour.

Physical aspects of colour

As we have seen in chapter 1, visible light is part of the electromagnetic spectrum. The values for
the wavelengths of blue, green and red were set in 1931 by the CIE (Commission Internationale
d’Eclairage), an organization responsible for colour standards.

Perceptual aspects of colour

The human visual system tends to perceive colour as being made up of varying amounts of red,
green and blue. That is, human vision is particularly sensitive to these colours; this is a function
of the cone cells in the retina of the eye. These values are called the primary colours. If we add
together any two primary colours we obtain the secondary colours:

magenta (purple) � red � blue �

cyan � green � blue �

yellow � red � green �

The amounts of red, green, and blue which make up a given colour can be determined by a colour
matching experiment. In such an experiment, people are asked to match a given colour (a colour

191
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source) with different amounts of the additive primaries red, green and blue. Such an experiment
was performed in 1931 by the CIE, and the results are shown in figure 11.1. Note that for some

350 400 450 500 550 600 650 700 750 800 850
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2.5
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Green Red

Figure 11.1: RGB colour matching functions (CIE, 1931)

wavelengths, various of the red, green or blue values are negative. This is a physical impossibility,
but it can be interpreted by adding the primary beam to the colour source, to maintain a colour
match.

To remove negative values from colour information, the CIE introduced the XYZ colour model.
The values of � ,

�
and � can be obtained from the corresponding

�
,

�
and

�
values by a linear

transformation:��
�
�
�

�

���
� �

��
�
 � � � �  � � � �

 � � ( � � � � �  � (  &(  �  &( � �  �   � � �   � � � �

���
�

��
�

�

�

�

���
� �

The inverse transformation is easily obtained by inverting the matrix:��
�

�

�

�

���
� �

��
�

� �  % �
� � � � � � �

 � � ( %
�

 � � % � � � ��( %  �  � �
 �  % �

�

 � � � � � �  % �

���
�

��
�
�
�

�

���
� �

The XYZ colour matching functions corresponding to the
�
,

�
,

�
curves of figure 11.1 are shown

in figure 11.2. The matrices given are not fixed; other matrices can be defined according to the
definition of the colour white. Different definitions of white will lead to different transformation
matrices.
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Figure 11.2: XYZ colour matching functions (CIE, 1931)

The CIE required that the
�

component corresponded with luminance, or perceived brightness
of the colour. That is why the row corresponding to

�
in the first matrix (that is, the second row)

sums to 1, and also why the
�

curve in figure 11.2 is symmetric about the middle of the visible
spectrum.

In general, the values of � ,
�

and � needed to form any particular colour are called the
tristimulus values. Values corresponding to particular colours can be obtained from published tables.
In order to discuss colour independent of brightness, the tristimulus values can be normalized by
dividing by ��� � � � :

� � �

� � � � �
� � �

� � � � �

�
� �
� � � � �

and so � � � �
�
� � . Thus a colour can be specified by � and � alone, called the chromaticity

coordinates. Given � , � , and � , we can obtain the tristimulus values � and � by working through
the above equations backwards:

� � �
� �
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� � � �

�
�

�
� � �

We can plot a chromaticity diagram, using the ciexyz31.txt1 file of XYZ values:

>> wxyz=load(’ciexyz31.txt’);
>> xyz=wxyz(:,2:4)’;
>> xy=xyz’./(sum(xyz)’*[1 1 1]);
>> x=xy(:,1)’;
>> y=xy(:,2)’;
>> figure,plot([x x(1)],[y y(1)]),xlabel(’x’),ylabel(’y’),axis square

Here the matrix xyz consists of the second, third and fourth columns of the data, and plot is a
function which draws a polygon with vertices taken from the x and y vectors. The extra x(1) and
y(1) ensures that the polygon joins up. The result is shown in figure 11.3. The values of � and �
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Figure 11.3: A chromaticity diagram

which lie within the horseshoe shape in figure 11.3 represent values which correspond to physically
realizable colours. A good account of the XYZ model and associated colour theory can be found in
Foley et. al [3].

1This file can be obtained from the Colour & Vision Research Laboratories web page http://www.cvrl.org.
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11.2 Colour models

A colour model is a method for specifying colours in some standard way. It generally consists
of a three dimensional coordinate system and a subspace of that system in which each colour is
represented by a single point. We shall investigate three systems.

11.2.1 RGB

In this model, each colour is represented as three values
�
,

�
and

�
, indicating the amounts of red,

green and blue which make up the colour. This model is used for displays on computer screens; a
monitor has three independent electron “guns” for the red, green and blue component of each colour.
We have met this model in chapter 1.

Note also from figure 11.1 that some colours require negative values of
�
,

�
or

�
. These colours

are not realizable on a computer monitor or TV set, on which only positive values are possible.
The colours corresponding to positive values form the RGB gamut ; in general a colour “gamut”
consists of all the colours realizable with a particular colour model. We can plot the RGB gamut
on a chromaticity diagram, using the xy coordinates obtained above. To define the gamut, we shall
create a �  � � �  � � � array, and to each point 	 � � � 
 in the array, associate an XYZ triple defined by	 � � �  � � � � �  � � � �

� � �  � �

� � �  � 
 . We can then compute the corresponding RGB triple, and if any
of the RGB values are negative, make the output value white. This is easily done with the simple
function shown in figure 11.4.

function res=gamut()

global cg;
x2r=[3.063 -1.393 -0.476;-0.969 1.876 0.042;0.068 -0.229 1.069];
cg=zeros(100,100,3);
for i=1:100,
for j=1:100,
cg(i,j,:)=x2r*[j/100 i/100 1-i/100-j/100]’;
if min(cg(i,j,:))<0,

cg(i,j,:)=[1 1 1];
end;

end;
end;
res=cg;

Figure 11.4: Computing the RGB gamut

We can then display the gamut inside the chromaticity figure by

>> imshow(cG),line([x’ x(1)],[y’ y(1)]),axis square,axis xy,axis on

and the result is shown in figure 11.5.

11.2.2 HSV

HSV stands for Hue, Saturation, Value. These terms have the following meanings:

Hue: The “true colour” attribute (red, green, blue, orange, yellow, and so on).
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Figure 11.5: The RGB gamut

Saturation: The amount by which the colour as been diluted with white. The more white in the
colour, the lower the saturation. So a deep red has high saturation, and a light red (a pinkish
colour) has low saturation.

Value: The degree of brightness: a well lit colour has high intensity; a dark colour has low
intensity.

This is a more intuitive method of describing colours, and as the intensity is independent of the
colour information, this is a very useful model for image processing. We can visualize this model as
a cone, as shown in figure 11.6.

Any point on the surface represents a purely saturated colour. The saturation is thus given as
the relative distance to the surface from the central axis of the structure. Hue is defined to be the
angle measurement from a pre-determined axis, say red.

11.2.3 Conversion between RGB and HSV

Suppose a colour is specified by its RGB values. If all the three values are equal, then the colour
will be a grey scale; that is, an intensity of white. Such a colour, containing just white, will thus
have a saturation of zero. Conversely, if the RGB values are very different, we would expect the
resulting colour to have a high saturation. In particular, if one or two of the RGB values are zero,
the saturation will be one, the highest possible value.

Hue is defined as the fraction around the circle starting from red, which thus has a hue of zero.
Reading around the circle in figure 11.6 produces the following hues:
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Figure 11.6: The colour space HSV as a cone

Colour Hue
Red

 

Yellow
 � � %�% (

Green
 � � � � �

Cyan
 � �

Blue
 � %�%�% (

Magenta
 � � � � �

Suppose we are given three
�
,

�
,

�
values, which we suppose to be between 0 and 1. So if they

are between 0 and 255, we first divide each value by 255. We then define:
� � ��� 
	� � � � � � �

� � �
�

� ��� � � � � � � �
� � �

�

To obtain a value for Hue, we consider several cases:

1. if
� � �

then � � �%
�

�

�

� ,

2. if
� � �

then � � �%
�

� � �
�

�

� � ,
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3. if
� � �

then � � �%
�
� � �

�

�

� � .
If � ends up with a negative value, we add 1. In the particular case 	 � � � � � 
 � 	  �  �  
 , for which
both

� � � �  
, we define 	 � � � � � 
 � 	  �  �  
 .

For example, suppose 	 � � � � � 
 � 	  � � �  � � �  � % 
 We have
� � ��� 
	�  � � �  � � �  � % � �  � %

� � �
�

� ��� �  � � �  � � �  � % � �  � %
�

 � � �  � �

� �  � �
 � % �  � %�%�% (

Since
� � �

we have
� � �%

�
� �  � � �

 � �
 � � � �  � ��� � � �

Conversion in this direction is implemented by the rgb2hsv function. This is of course designed to
be used on

$ �
�
� �

arrays, but let’s just experiment with our previous example:

>> rgb2hsv([0.2 0.4 0.6])

ans =

0.5833 0.6667 0.6000

and these are indeed the � , � and
�

values we have just calculated.
To go the other way, we start by defining:

� � � � % � �� � % �
�

� �� � � 	 � � � 

� � � 	 � � � � 

� � � 	 � � � 	 � � � 
 


Since � � is a integer between 0 and 5, we have six cases to consider:
� � � � �

 � � �
� � � �

�
� � �

� � � �

� � � �

� � � �

Let’s take the HSV values we computed above. We have:

� � � � % 	  � ��� � � 
 � � �� � % 	  � ��� � � 

�

� �  � �� �  � % 	 � �

 � %�%�% ( 
 �  � �
� �  � % 	 � �

	  � %�%�% ( 
 	  � � 
 
 �  � �
� �  � % 	 � �

 � %�%�% ( 	 � �

 � � 
 
 �  � �
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Since � � � �
we have

	 � � � � � 
 � 	 � � � � � 
 � 	  � � �  � � �  � % 
��

Conversion from HSV to RGB is implemented by the hsv2rgb function.

11.2.4 YIQ

This colour space is used for TV/video in America and other countries where NTSC is the video
standard (Australia uses PAL). In this scheme Y is the “luminance” (this corresponds roughly with
intensity), and I and Q carry the colour information. The conversion between RGB is straightfor-
ward: ��
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���
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The two conversion matrices are of course inverses of each other. Note the difference between Y
and V:

� �  � � � �
� �  � ����( � �  � � � � �

� � ��� 
	� � � � � � � �

This reflects the fact that the human visual system assigns more intensity to the green component
of an image than to the red and blue components. We note here that other transformations [4]

� � ��� � � �
have

� �  � � � � � �  � � � � � �  � � � � �

where the intensity is a simple average of the primary values. Note also that the
�

of
� � �

is
different to the

�
of �

� � , with the similarity that both represent luminance.
Since YIQ is a linear transformation of RGB, we can picture YIQ to be a parallelepiped (a

rectangular box which has been skewed in each direction) for which the Y axis lies along the central	  �  �  
 to 	 � � � � � 
 line of RGB. Figure 11.7 shows this.
That the conversions are linear, and hence easy to do, makes this a good choice for colour

image processing. Conversion between RGB and YIQ are implemented with the Matlab functions
rgb2ntsc and ntsc2rgb.

11.3 Colour images in Matlab

Since a colour image requires three separate items of information for each pixel, a (true) colour
image of size

$ �
� is represented in Matlab by an array of size

$ �
�
� �

: a three dimensional
array. We can think of such an array as a single entity consisting of three separate matrices aligned
vertically. Figure 11.8 shows a diagram illustrating this idea. Suppose we read in an RGB image:
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Figure 11.7: The RGB cube and its YIQ transformation

Blue

Green

Red

Figure 11.8: A three dimensional array for an RGB image
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>> x=imread(’lily.tif’);
>> size(x)

ans =

186 230 3

We can isolate each colour component by the colon operator:

x(:,:,1) The first, or red component
x(:,:,2) The second, or green component
x(:,:,3) The third, or blue component

These can all be viewed with imshow:

>> imshow(x)
>> figure,imshow(x(:,:,1))
>> figure,imshow(x(:,:,1))
>> figure,imshow(x(:,:,2))

These are all shown in figure 11.9. Notice how the colours with particular hues show up with high

A colour image Red component Green component Blue component

Figure 11.9: An RGB colour image and its components

intensities in their respective components. For the rose in the top right, and the flower in the bottom
left, both of which are predominantly red, the red component shows a very high intensity for these
two flowers. The green and blue components show much lower intensities. Similarly the green
leaves—at the top left and bottom right—show up with higher intensity in the green component
than the other two.

We can convert to YIQ or HSV and view the components again:

>> xh=rgb2hsv(x);
>> imshow(xh(:,:,1))
>> figure,imshow(xh(:,:,2))
>> figure,imshow(xh(:,:,3))

and these are shown in figure 11.10. We can do precisely the same thing for the YIQ colour space:

>> xn=rgb2ntsc(x);
>> imshow(xn(:,:,1))
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Hue Saturation Value

Figure 11.10: The HSV components

>> figure,imshow(xn(:,:,2))
>> figure,imshow(xn(:,:,3))

and these are shown in figure 11.11. Notice that the Y component of YIQ gives a better greyscale

Y I Q

Figure 11.11: The YIQ components

version of the image than the value of HSV. The top right rose, in particular, is quite washed out
in figure 11.10 (Value), but shows better contrast in figure 11.11 (Y).

We shall see below how to put three matrices, obtained by operations on the separate compo-
nents, back into a single three dimensional array for display.

11.4 Pseudocolouring

This means assigning colours to a grey-scale image in order to make certain aspects of the image
more amenable for visual interpretation—for example, for medical images. There are different
methods of pseudocolouring.

11.4.1 Intensity slicing

In this method, we break up the image into various grey level ranges. We simply assign a different
colour to each range. For example:

grey level:
 
–
% � % �

– � �
( � �

�
– � � � � � � – �

���

colour: blue magenta green red

We can consider this as a mapping, as shown in figure 11.12.
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blue

magenta

green

red

colour

 % � � � ( � � � � ���
grey level

Figure 11.12: Intensity slicing as a mapping

11.4.2 Grey—Colour transformations

We have three functions
��� 	���
 , ��� 	�� 
 , � � 	�� 
 which assign red, green and blue values to each grey

level � . These values (with appropriate scaling, if necessary) are then used for display. Using an
appropriate set of functions can enhance a grey-scale image with impressive results.

�

�

�

 

 

 

grey levels�

���

���

� �

The grey level � in the diagram is mapped onto red, green and blue values of
 � ��( � ,  � � � � and

 � ( �
respectively.

In Matlab, a simple way to view an image with ad ded colour is to use imshow with an extra
colormap parameter. For example, consider the image blocks.tif. We can add a colour map with
the colormap function; there are several existing colour maps to choose from. Figure 11.13 shows
the children’s blocks image (from figure 1.4) after colour transformations. We created the colour
image (a) with:

>> b=imread(’blocks.tif’);
>> imshow(b,colormap(jet(256))

However, a bad choice of colour map can ruin an image. Image (b) in figure 11.13 is an example
of this, where we apply the vga colour map. Since this only has 16 rows, we need to reduce the
number of greyscales in the image to 16. This is done with the grayslice function:
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(a) (b)

Figure 11.13: Applying a colour map to a greyscale image

>> b16=grayslice(b,16);
>> figure,imshow(b16,colormap(vga))

The result, although undeniably colourful, is not really an improvement on the original image. The
available colour maps are listed in the help file for graph3d:

hsv - Hue-saturation-value color map.
hot - Black-red-yellow-white color map.
gray - Linear gray-scale color map.
bone - Gray-scale with tinge of blue color map.
copper - Linear copper-tone color map.
pink - Pastel shades of pink color map.
white - All white color map.
flag - Alternating red, white, blue, and black color map.
lines - Color map with the line colors.
colorcube - Enhanced color-cube color map.
vga - Windows colormap for 16 colors.
jet - Variant of HSV.
prism - Prism color map.
cool - Shades of cyan and magenta color map.
autumn - Shades of red and yellow color map.
spring - Shades of magenta and yellow color map.
winter - Shades of blue and green color map.
summer - Shades of green and yellow color map.

There are help files for each of these colour maps, so that

>> help hsv

will provide some information on the hsv colour map.
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We can easily create our own colour map: it must by a matrix with 3 columns, and each row
consists of RGB values between 0.0 and 1.0. Suppose we wish to create a blue, magenta, green, red
colour map as shown in figure 11.12. Using the RGB values:

Colour Red Green blue
Blue 0 0 1
Magenta 1 0 1
Green 0 1 0
Red 1 0 0

we can create our colour map with:

>> mycolourmap=[0 0 1;1 0 1;0 1 0;1 0 0];

Before we apply it to the blocks image, we need to scale the image down so that there are only the
four greyscales 0, 1, 2 and 3:

>> b4=grayslice(b,4);
>> imshow(b4,mycolourmap)

and the result is shown in figure 11.14.

Figure 11.14: An image coloured with a “handmade” colour map

11.5 Processing of colour images

There are two methods we can use:

1. we can process each R, G, B matrix separately,

2. we can transform the colour space to one in which the intensity is separated from the colour,
and process the intensity component only.

Schemas for these are given in figures 11.15 and 11.16.
We shall consider a number of different image processing tasks, and apply either of the above

schema to colour images.



206 CHAPTER 11. COLOUR PROCESSING

Image

� � �

� � � � � �

Output

Figure 11.15: RGB processing

� ��� �

Image

� � �

� 	 


��� 	 


� � � � � �

Output

Figure 11.16: Intensity processing
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Contrast enhancement

This is best done by processing the intensity component. Suppose we start with the image cat.tif,
which is an indexed colour image, and convert it to a truecolour (RGB) image.

>> [x,map]=imread(’cat.tif’);
>> c=ind2rgb(x,map);

Now we have to convert from RGB to YIQ, so as to be able to isolate the intensity component:

>> cn=rgb2ntsc(c);

Now we apply histogram equalization to the intensity component, and convert back to RGB for
display:

>> cn(:,:,1)=histeq(cn(:,:,1));
>> c2=ntsc2rgb(cn);
>> imshow(c2)

The result is shown in figure 11.17. Whether this is an improvement is debatable, but it has had
its contrast enhanced.

But suppose we try to apply histogram equalization to each of the RGB components:

>> cr=histeq(c(:,:,1));
>> cg=histeq(c(:,:,2));
>> cb=histeq(c(:,:,3));

Now we have to put them all back into a single 3 dimensional array for use with imshow. The cat
function is what we want:

>> c3=cat(3,cr,cg,cb);
>> imshow(c3)

The first variable to cat is the dimension along which we want our arrays to be joined. The result
is shown for comparison in figure 11.17. This is not acceptable, as some strange colours have been
introduced; the cat’s fur has developed a sort of purplish tint, and the grass colour is somewhat
washed out.

Spatial filtering

It very much depends on the filter as to which schema we use. For a low pass filter, say a blurring
filter, we can apply the filter to each RGB component:

>> a15=fspecial(’average’,15);
>> cr=filter2(a15,c(:,:,1));
>> cg=filter2(a15,c(:,:,2));
>> cb=filter2(a15,c(:,:,3));
>> blur=cat(3,cr,cg,cb);
>> imshow(blur)

and the result is shown in figure 11.18. We could also obtain a similar effect by applying the filter
to the intensity component only. But for a high pass filter, for example an unsharp masking filter,
we are better off working with the intensity component only:
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Intensity processing Using each RGB component

Figure 11.17: Histogram equalization of a colour image

>> cn=rgb2ntsc(c);
>> a=fspecial(’unsharp’);
>> cn(:,:,1)=filter2(a,cn(:,:,1));
>> cu=ntsc2rgb(cn);
>> imshow(cu)

and the result is shown in figure 11.18. In general, we will obtain reasonable results using the

Low pass filtering High pass filtering

Figure 11.18: Spatial filtering of a colour image

intensity component only. Although we can sometimes apply a filter to each of the RGB components,
as we did for the blurring example above, we cannot be guaranteed a good result. The problem is
that any filter will change the values of the pixels, and this may introduce unwanted colours.

Noise reduction

As we did in chapters 5 and 6, we shall use the image twins.tif: but now in full colour!

>> tw=imread(’twins.tif’);
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Now we can add noise, and look at the noisy image, and its RGB components:

>> tn=imnoise(tw,’salt & pepper’);
>> imshow(tn)
>> figure,imshow(tn(:,:,1))
>> figure,imshow(tn(:,:,2))
>> figure,imshow(tn(:,:,3))

These are all shown in figure 11.19. It would appear that we should apply median filtering to each

Salt & pepper noise The red component

The green component The blue component

Figure 11.19: Noise on a colour image

of the RGB components. This is easily done:

>> trm=medfilt2(tn(:,:,1));
>> tgm=medfilt2(tn(:,:,2));
>> tbm=medfilt2(tn(:,:,3));
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>> tm=cat(3,trm,tgm,tbm);
>> imshow(tm)

and the result is shown in figure 11.20. We can’t in this instance apply the median filter to the
intensity component only, because the conversion from RGB to YIQ spreads the noise across all the
YIQ components. If we remove the noise from Y only:

>> tnn=rgb2ntsc(tn);
>> tnn(:,:,1)=medfilt2(tnn(:,:,1));
>> tm2=ntsc2rgb(tnn);
>> imshow(tm2)

then the noise has been slightly diminished as shown in figure 11.20, but it is still there. If the noise

Denoising each RGB component Denoising Y only

Figure 11.20: Attempts at denoising a colour image

applies to only one of the RGB components, then it would be appropriate to apply a denoising
technique to this component only.

Also note that the method of noise removal must depend on the generation of noise. In the
above example we tacitly assumed that the noise was generated after the image had been acquired
and stored as RGB components. But as noise can arise anywhere in the image acquisition process,
it is quite reasonable to assume that noise might affect only the brightness of the image. In such a
case denoising the Y component of YIQ will produce the best results.

Edge detection

An edge image will be a binary image containing the edges of the input. We can go about obtaining
an edge image in two ways:

1. we can take the intensity component only, and apply the edge function to it,

2. we can apply the edge function to each of the RGB components, and join the results.

To implement the first method, we start with the rgb2gray function:
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>> fg=rgb2gray(f);
>> fe1=edge(fg);
>> imshow(fe1)

Recall that edge with no parameters implements Sobel edge detection. The result is shown in
figure 11.21. For the second method, we can join the results with the logical “or”:

>> f1=edge(f(:,:,1));
>> f2=edge(f(:,:,2));
>> f3=edge(f(:,:,3));
>> fe2=f1 | f2 | f3;
>> figure,imshow(fe2)

and this is also shown in figure 11.21. The edge image fe2 is a much more complete edge image.

fe1: Edges after rgb2gray fe2: Edges of each RGB component

Figure 11.21: The edges of a colour image

Notice that the rose now has most of its edges, where in image fe1 only a few were shown. Also
note that there are the edges of some leaves in the bottom left of fe2 which are completely missing
from fe1. The success of these methods will also depend on the parameters of the edge function
chosen; for example the threshold value used. In the examples shown, the edge function has been
used with its default threshold.

Exercises

1. By hand, determine the saturation and intensity components of the following image, where
the RGB values are as given:
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Chapter 12

Image coding and compression

12.1 Lossless and lossy compression

We have seen that image files can be very large. It is thus important for reasons both of storage
and file transfer to make these file sizes smaller, if possible. In section 1.9 we touched briefly on the
topic of compression; in this section we investigate some standard compression methods. It will be
necessary to distinguish between two different classes of compression methods: lossless compression,
where all the information is retained, and lossy compression where some information is lost.

Lossless compression is preferred for images of legal, scientific or political significance, where
loss of data, even of apparent insignificance, could have considerable consequences. Unfortunately
this style tends not to lead to high compression ratios. However, lossless compression is used as
part of many standard image formats.

12.2 Huffman coding

The idea of Huffman coding is simple. Rather than using a fixed length code (8 bits) to represent
the grey values in an image, we use a variable length code, with smaller length codes corresponding
to more probable grey values.

A small example will make this clear. Suppose we have a 2-bit greyscale image with only four
grey levels: 0, 1, 2, 3, with the probabilities 0.2, 0.4, 0.3 and 0.1 respectively. That is, 20% of pixels
in the image have grey value 50; 40% have grey value 100, and so on. The following table shows
fixed length and variable length codes for this image:

Grey value Probability Fixed code Variable code
0 0.2 00 000
1 0.4 01 1
2 0.3 10 01
3 0.1 11 001

Now consider how this image has been compressed. Each grey value has its own unique identifying
code. The average number of bits per pixel can be easily calculated as the expected value (in a
probabilistic sense):

	  � � � � 

� 	  � � � � 

� 	  � � � � 

� 	  � � � � 
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Notice that the longest codewords are associated with the lowest probabilities. This average is
indeed smaller than 2.

215
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This can be made more precise by the notion of entropy, which is a measure of the amount of
information. Specifically, the entropy � of an image is the theoretical minimum number of bits per
pixel required to encode the image with no loss of information. It is defined by

� �
�

� ! �0
� 2 �
� �

� ��� � 	 � � 


where the index
�
is taken over all greyscales of the image, and � � is the probability of grey level

�
occurring in the image. Very good accounts of the basics of information theory and entropy are

given by Roman [10] and Welsh [16]. In the example given above,
� �

�

�  � �
����� � 	  � � 
 �  � � � ��� � 	  � � 
 �  � � � ��� � 	  � � 
 �  � � � ��� � 	  � � 
 � � � � � �&% � �

This means that no matter what coding scheme is used, it will never use less than 1.8464 bits per
pixel. On this basis, the Huffman coding scheme given above, giving an average number of bits per
pixel much closer to this theoretical minimum than 2, provides a very good result.

To obtain the Huffman code for a given image we proceed as follows:

1. Determine the probabilities of each grey value in the image.

2. Form a binary tree by adding probabilities two at a time, always taking the two lowest available
values.

3. Now assign 0 and 1 arbitrarily to each branch of the tree from its apex.

4. Read the codes from the top down.

To see how this works, consider the example of a 3-bit greyscale image (so the grey values are 0–7)
with the following probabilities:

Grey value 0 1 2 3 4 5 6 7
Probability 0.19 0.25 0.21 0.16 0.08 0.06 0.03 0.02

For these probabilities, the entropy can be calculated to be � � % �  �� . We can now combine probabilities
two at a time as shown in figure 12.1.

Note that if we have a choice of probabilities we choose arbitrarily. The second stage consists of
arbitrarily assigning 0’s and 1’s to each branch of the tree just obtained. This is shown in figure 12.2.

To obtain the codes for each grey value, start at the 1 on the top right, and work back towards
the grey value in question, listing the numbers passed on the way. This produces:

Grey value Huffman code
0 00
1 10
2 01
3 110
4 1110
5 11110
6 111110
7 111111

As above, we can evaluate the average number of bits per pixel as an expected value:
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Figure 12.1: Forming the Huffman code tree
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Figure 12.2: Assigning 0’s and 1’s to the branches
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which is a significant improvement over 3 bits per pixel, and very close to the theoretical minimum
of 2.6508 given by the entropy.

Huffman codes are uniquely decodable, in that a string can be decoded in only one way. For
example, consider the string

� �  � � �      �   � � � � �  

to be decoded with the Huffman code generated above. There is no code word 1, or 11, so we may
take the first three bits 110 as being the code for grey value 3. Notice also that no other code word
begins with this string. For the next few bits, 1110 is a code word; no other begins with this string,
and no other smaller string is a codeword. So we can decode this string as grey level 4. Continuing
in this way we obtain:
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�

as the decoding for this string.
For more information about Huffman coding, and its limitations and generalizations, see [4, 9].

12.3 Run length encoding

Run length encoding (RLE) is based on a simple idea: to encode strings of zeros and ones by the
number of repetitions in each string. RLE has become a standard in facsimile transmission. For a
binary image, there are many different implementations of RLE; one method is to encode each line
separately, starting with the number of 0’s. So the following binary image:

0 1 1 0 0 0
0 0 1 1 1 0
1 1 1 0 0 1
0 1 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1

would be encoded as
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Another method [14] is to encode each row as a list of pairs of numbers; the first number in each
pair given the starting position of a run of 1’s, and the second number its length. So the above
binary image would have the encoding
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Greyscale images can be encoded by breaking them up into their bit planes; these were discussed
in chapter 1.

To give a simple example, consider the following 4-bit image and its binary representation:

�  ( � �

� � � ( %
� ( � �

�  � � � �
� �

�  �   � � � �  � � �  � �
�  � � �  � �  � � �  � �  
�  � �  � � �  �  �  �  � 
�  �  �  � �  � �   � � �



12.3. RUN LENGTH ENCODING 219

We may break it into bit planes as shown:
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2nd plane
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�    
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3rd plane

and then each plane can be encoded separately using our chosen implementation of RLE.
However, there is a problem with bit planes, and that is that small changes of grey value may

cause significant changes in bits. For example, the change from value 7 to 8 causes the change
of all four bits, since we are changing the binary strings 0111 to 1000. The problem is of course
exacerbated for 8-bit images. For RLE to be effective, we should hope that long runs of very similar
grey values would result in very good compression rates for the code. But this may not be the case.
A 4-bit image consisting of randomly distributed 7’s and 8’s would thus result in uncorrelated bit
planes, and little effective compression.

To overcome this difficulty, we may encode the grey values with their binary Gray codes. A
Gray code is an ordering of all binary strings of a given length so that there is only one bit change
between a string and the next. So a 4-bit Gray code is:

� � �    

� � �   �
� � �  � �
� � �  �  

� � � � �  

�  � � � �� � � �  
� � �   
(  �   
%  �  ��  � � ��  � �  
�   �  

�
  � �

�    �     

See [9] for discussion and detail. To see the advantages, consider the following 4-bit image with its
binary and Gray code encodings:
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where the first binary array is the standard binary encoding, and the second array the Gray codes.
The binary bit planes are:
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and the bit planes corresponding to the Gray codes are:
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Notice that the Gray code planes are highly correlated except for one bit plane, whereas all the
binary bit planes are uncorrelated.

Run length encoding in Matlab

We can experiment with run length encoding by writing a simple function to implement it. To
make it easy on ourselves, we shall just stick with single binary images. Our output will be a single
vector, giving the numbers of zeros and ones, alternating, through our image row by row. We start
by putting our image into a single row. For a binary image im, this can be done with the two
commands

L=prod(size(im));
im=reshape(im’,1,L);

To find the number of beginning zeros, we obtain the position of the first 1, thus:

min(find(im==1))

We append one less than this result to our output vector. It may well be that there are no further
ones, in which case we have reached the end of the file, and we stop by appending the current length
of our image to the output vector. We now change to looking for the place of the next zero; we can
use the min(find) command again, but we first reduce our image by the zeroes we have already
found.

The following table shows how we can implement run length encoding:

Image Looking for Place RLE output
[]

[0 0 1 1 1 0 0 0 1] 1 3 [2]
[1 1 1 0 0 0 1] 0 4 [2 3]

[0 0 0 1] 1 4 [2 3 3]
[1] 0 Not found [2 3 3 1]

One more example:
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Image Looking for Place RLE output
[]

[1 1 1 0 0 0 0 1 1] 1 1 [0]
[1 1 1 0 0 0 0 1 1] 0 4 [0 3]

[0 0 0 0 1 1] 1 4 [0 3 4]
[1 1] 0 Not found [0 3 4 2]

Notice that in this second example, since the length of our initial run of zeros was found to be zero,
we do not reduce the length of our image in the next step.

Figure 12.3 shows the implementation of this algorithm in Matlab.

function out=rle(image)
%
% RLE(IMAGE) produces a vector containing the run-length encoding of
% IMAGE, which should be a binary image. The image is set out as a long
% row, and the conde contains the number of zeros, followed by the number
% of ones, alternating.
%
% Example:
%
% rle([1 1 1 0 0;0 0 1 1 1;1 1 0 0 0])
%
% ans =
%
% 0 3 4 5 3
%
L=prod(size(image));
im=reshape(image’,1,L);
x=1;
out=[];
while L ~= 0,
temp=min(find(im == x));
if isempty(temp),
out=[out L];
break

end;
out=[out temp-1];
x=1-x;
im=im(temp:L);
L=L-temp+1;

end;

Figure 12.3: A Matlab function for obtaining the run length code of a binary image

Now we can test this on a few images:

>> c=imread(’circles.tif’);
>> cr=rle(c);
>> whos c cr

Name Size Bytes Class

c 256x256 65536 uint8 array (logical)
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cr 1x693 5544 double array

We can reduce the size of the output by storing it using the data type uint16: unsigned 16-bit
integers.

>> cr=uint16(cr);
>> whos cr

Name Size Bytes Class

cr 1x693 1386 uint16 array

Even if the original circles image was stored as one bit per pixel, or eight pixels per byte, we would
have a total of

% ��� � %
� � � � � �

bytes: still more than the run length code. So in this example, run length encoding provides a
reasonable amount of compression.

>> t=imread(’text.tif’);
>> tr=rle(t);
>> whos t tr

Name Size Bytes Class

t 256x256 65536 uint8 array (logical)
tr 1x2923 23384 double array

Again better compression can be obtained by changing the data type.

>> tr=uint16(tr);
>> whos tr

Name Size Bytes Class

tr 1x2923 5846 uint16 array

Although this is not as good as for the previous image, it is still better than the minimum of 8192
bytes for the original image.

Exercises

1. Construct a Huffman code for each of the probability tables given:

grey scale
 � � � � � % (

probability (a) �  &( � � � �  �� �  � � � �  �� �  % �  �
(b) � � � � � � � � � � � � � � � � � � � � � � � �
(c) �  � � � � � � � � � � � � � � � � � � � � %

In each case determine the average bits/pixel given by your code.

2. From your results of the previous question, what do think are the conditions of the probability
distribution which give rise to a high compression rate using Huffman coding?


